Skip to main content

CSA A23.3 / CSA S6

The density of normal weight concrete is assumed to be 2300 kg/m3; see 8.6.2.2 (A23.3) and 8.4.1.7 (S6).

The design strength is given in 10.1.7 by

fcd=max(0.67,0.850.0015fc)φfcf_{cd} = max (0.67,0.85-0.0015 f_c) \varphi f_c \\

The tensile strength is given in Equation 8.3 (A23.3) and 8.4.1.8.1 in (S6)

fct=0.6fc      (for CSA A23.3)f_{ct} =0.6 \sqrt{f_c} \space \space \space \space \space \space \text{(for CSA A23.3)} \\
fct=0.4fc      (for CSA S6)f_{ct} =0.4 \sqrt{f_c} \space \space \space \space \space \space \text{(for CSA S6)} \\

For normal weight concrete the modulus is given in A23.3 Equation 8.2.

E=4.5fcE= 4.5 \sqrt{f_c} \\

and in CSA S6 8.4.1.7

E=3.0fc+6.9E= 3.0 \sqrt{f_c} +6.9 \\

The strains are defined as

εcu\varepsilon_{cu}εax\varepsilon_{ax}εplas\varepsilon_{plas}εmax\varepsilon_{max}εpeak\varepsilon_{peak}
Parabola-rectangle0.0035εcu\varepsilon_{cu}(13β)εu(1-3\beta)\varepsilon_{u}
Rectangle0.0035εcu\varepsilon_{cu}εβ\varepsilon_{\beta}
Bilinear0.0035εcu\varepsilon_{cu}(12β)εu(1-2 \beta)\varepsilon_u
Linear0.0035εmax\varepsilon_{max}
Non-linear
Popovics0.0035εpop\varepsilon_{pop}
EC2 Confined
AISC filled tube
Explicit0.0035εcu\varepsilon_{cu}0.0035

See also the Theory section on Concrete material models.