EN 1992
The density of normal weight concrete is specified in 11.3.2 as 2200
kg/m3.
The design strength is given in 3.1.6 by
fcd=αccfc/γ For the rectangular stress block this is modified to
fcd=αccfc/γ fc≤50MPafcd=αcc1.25(1−fc/250)fc/γ fc>50MPa The tensile strength is given in Table 3.1 as
fct=0.3fc2/3 fc≤50MPafct=2.12ln(1+(fc+8)/10) fc>50MPa The modulus is defined in Table 3.1
E=22(10fc+8)0.3 The strains are defined as:
| εcu | εax | εplas | εmax | εpeak |
---|
Parabola-rectangle | εcu2 | εc2 | εc2 | | |
Rectangle | εcu3 | εc3 | εβ | | |
Bilinear | εcu3 | εc3 | εc3 | εcu3 | εc3 |
Linear | | | | εcu2 | εc2 |
Non-linear | | | | εcu1 | εc1 |
Popovics | | | | | |
EC2 Confined | εcu2,c | εc2,c | εc2,c | | |
AISC filled tube | | | | | |
Explicit | εcu2,c | εc2,c | | εc2,c | |
εc1=0.007fcm0.31 ≤0.0028 εcu1={0.0035 fc≤50MPa0.028+0.027(10090−fc)4 εc2={0.002 fc≤50MPa0.002+0.000085(fck−50)0.53 εcu2={0.0035 fc≤50MPa0.0026+0.035(10090−fc)4 εc3={0.00175 fc≤50MPa0.00175+0.00055(40fck−50) εcu3={0.0035 fc≤50MPa0.0026+0.035(10090−fc)4 See also the Theory section on Concrete material models.