Skip to main content

Park

The steel stress-strain curve is characterised a liner response to yield, followed by a fully plastic zone, before hardening until failure. The initial slope is defined by the elastic modulus, EE, until the stress reaches fydf_{yd} . The slope is then zero for a short strain range, then rising to a peak stress before failure.

Park slope to peak stress formula diagram

σ=fud(fudfyd)(εuεεuεp)P\sigma=f_{ud}-(f_{ud}-f_{yd})\Bigl(\frac{\varepsilon_u-\varepsilon}{\varepsilon_u-\varepsilon_p}\Bigl)^P \\
p=E(εuεpfudfyd)p=E\Bigl(\frac{\varepsilon_u-\varepsilon_p}{f_{ud}-f_{yd}}\Bigl)

The hardening zone can be approximated by a parabola

σfyd=aε2+bε+c\frac{\sigma}{f_{yd}}=a\varepsilon^2+b\varepsilon+c

Defining the perfectly plastic strain limit as εp\varepsilon_p and assuming zero slope at εu\varepsilon_u then

1=aεp2+bεp+c1=a\varepsilon_p^2+b\varepsilon_p+c
fudfyd=aεu2+bεu+c\frac{f_{ud}}{f_{yd}}=a\varepsilon_u^2+b\varepsilon_u+c
b=2aεub=-2a\varepsilon_u

The difference between the first two gives

fudfyd1=a(εu2εp2)+b(εuεp)\frac{f_{ud}}{f_{yd}}-1=a(\varepsilon_u^2-\varepsilon_p^2)+b(\varepsilon_u-\varepsilon_p)

And substituting the third into this gives

fudfyd1=a[(εu2εp2)2εu(εuεp)]\frac{f_{ud}}{f_{yd}}-1=a[(\varepsilon_u^2-\varepsilon_p^2)-2\varepsilon_u(\varepsilon_u-\varepsilon_p)]

or

a=1(fud/fyd)(εuεp)2a=\frac{1-(f_{ud}/f_{yd})}{(\varepsilon_u-\varepsilon_p)^2}
b=2εuab=-2\varepsilon_ua
c=1bεpaεp2c=1-b\varepsilon_p-a\varepsilon_p^2