# Code Related Data

Codes with strength reduction factors

Codes with partial safety factors on materials

Current tabular codes

Codes with resistance factor on materials

Superseeded codes with partial safety factors on materials

# American Codes

These codes use strength reduction factors.

ACI318-08 ACI318-11 ACI318-14
Concrete strength
Steel strength
Strength reduction factor for axial compression*Ā  f = 0.65
[9.3.2.2]
f = 0.65
[9.3.2.2]
f = 0.65
[21.2.2]
Strength reduction factor for axial tension*Ā  f = 0.9
[9.3.2.1]
f = 0.9
[9.3.2.1]
f = 0.9
[21.2.2]
Uncracked concrete design strength for rectangular stress blockĀ  0.85Ā 
[10.2.7.1]

0.85Ā 
[10.2.7.1]

0.85Ā 
[22.2.2.4.1]

Cracked concrete design strength (equal to twice the upper limit on shear strength) (5/3) Ā  ( Ā  inĀ MPa)
20 Ā Ā Ā  ( Ā  in psi)
[11.2.1.1 & 11.4.7.9]
1.66 Ā Ā  ( Ā  inĀ MPa)
20 Ā Ā Ā  (Ā  Ā  in psi)
[11.2.1.1 & 11.4.7.9
11.9.3]
1.66 Ā  ( Ā  inĀ MPa)
20 Ā Ā Ā Ā Ā  (Ā  Ā  in psi)
[11.5.4.3]
Concrete tensile design strength (used only to determine whether section cracked) (1/3) Ā  ( Ā  inĀ MPa)
4 Ā Ā Ā Ā Ā  ( Ā  in psi)
[11.3.3.2]
0.33 Ā Ā  ( Ā  inĀ MPa)
4 Ā Ā Ā Ā Ā  ( Ā  in psi)
[11.3.3.2]
0.33 Ā  ( Ā  inĀ MPa)
4 Ā Ā Ā Ā  ( Ā  in psi)
[22.5.8.3.3]
Compressive plateau concrete strain 0.002
[assumed]
0.002
[assumed]
0.002
[assumed]
Maximum axial compressive concrete strain 0.003
[10.2.3]
0.003
[10.2.3]
0.003
[22.2.2.1]
Maximum flexural compressive concrete strain 0.003
[10.2.3]
0.003
[10.2.3]
0.003
[22.2.2.1]
Proportion of depth to neutral axis over which constant stress acts 0.85-0.05( ā€‘30)/7
( Ā  inĀ MPa)
0.85- 0.05( /1000ā€‘4)
( Ā  in psi)
but within limits 0.65 to 0.85
[10.2.7.3]
0.85-0.05( ā€‘28)/7
( Ā  inĀ MPa)
0.85- 0.05( /1000ā€‘4)
( Ā  in psi)
but within limits 0.65 to 0.85
[10.2.7.3]
0.85-0.05( ā€‘28)/7
( Ā  inĀ MPa)
0.85- 0.05( /1000ā€‘4)
( Ā  in psi)
but within limits 0.65 to 0.85
[22.2.2.4.3]
Maximum value of ratio of depth to neutral axis to effective depth in flexural situationsĀ 
[10.3.5]

[10.3.5]

[7.3.3.1 & 8.3.3.1]
Elastic modulus of steel 200Ā GPa
[8.5.2]
200Ā GPa
[8.5.2]
200Ā GPa
[20.2.2.2]
Design strength of reinforcement in tensionĀ 
[10.2.4]

[10.2.4]

[20.2.2.1]
Design strength of reinforcement in compressionĀ 
[10.2.4]

[10.2.4]

[20.2.2.1]
Maximum linear steel stressĀ 
[10.2.4]

[10.2.4]

[20.2.2.1]
Yield strain in tension /
[10.2.4]
/
[10.2.4]
/
[20.2.2.1]
Yield strain in compression /
[10.2.4]
/
[10.2.4]
/
[20.2.2.1]
Design strain limit [0.01]
assumed
[0.01]
assumed
[0.01]
assumed
Maximum concrete strength - - -
Maximum steel strength -
-
-
Minimum eccentricity 0.10 h
[R10.3.6 & R10.3.7]
0.10 h
[R10.3.6 & R10.3.7]
0.10 h
[R22.4.2.1]
Minimum area compression reinforcement -

-

-

maximum permitted angle between applied and resulting principal stress - - -

*Applied forces and moments are divided by the strength reduction factor to obtain design values for use within RCSlab. The appropriate vales are determined as follows:

kuc = Īµcu/(Īµcu + fyd/Es)

kut = Īµcu/(Īµcu + 0.005)

Mc = Ļ†ckucĪ²fcdc Ɨ (1 - kucĪ²/2) Ɨ (h/2 + zmin)2 - N Ɨ zmin

Mt = Ļ†tkutĪ²fcdc Ɨ (1 - kutĪ²/2) Ɨ (h/2 + zmin)2 - N Ɨ zmin

If

If

Otherwise:

# Australian Codes

This code uses strength reduction factors.

AS3600
Concrete strength
Steel strength
Strength reduction factor for axial compression*Ā  f = 0.6
[Table 2.2.2]
Strength reduction factor for axial tension*Ā  f = 0.8Ā Ā Ā Ā  (N bars)
f = 0.64Ā Ā  (L bars)
[Table 2.2.2]
Uncracked concrete design strength for rectangular stress blockĀ 
WhereĀ  = 1.00-0.003Ā 
but within limits 0.67 to 0.85
[10.6.2.5(b)]
Cracked concrete design strength (equal to twice the upper limit on shear strength) 0.4Ā 
[11.6.2]

Concrete tensile design strength (used only to determine whether section cracked) 0.36
[3.1.1.3]
Compressive plateau concrete strain 0.002
[assumed]
Maximum axial compressive concrete strain 0.0025
[10.6.2.2(b)]
Maximum flexural compressive concrete strain 0.003
[8.1.2.(d)]
Proportion of depth to neutral axis over which constant stress acts 1.05-0.007Ā 
but within limits 0.67 to 0.85
[10.6.2.5(b)]



Maximum value of ratio of depth to neutral axis to effective depth in flexural situationsĀ  0.36
[8.1.5]
Elastic modulus of steel 200Ā GPa
[3.2.2(a)]
Design strength of reinforcement in tensionĀ 
[3.2.1]
Design strength of reinforcement in compressionĀ 
[3.2.1]
Maximum linear steel stressĀ 
[3.2.1]
Yield strain in tension /
[3.2.1]
Yield strain in compression /
[3.2.1]
Design strain limit Class N 0.05
Class L 0.015
[3.2.1]
Maximum concrete strength -
Maximum steel strength Ā  Ā£ 500Ā MPa
[3.2.1]
Minimum eccentricity 0.05 h
[10.1.2]
Minimum area compression reinforcement 0.01
(0.5% each face)
[10.7.1 (a)]
Maximum permitted angle between applied and resulting principal stress -

*Applied forces and moments are divided by the strength reduction factor to obtain design values for use within RCSlab. The appropriate vales are determined as follows:

kuc = (1.19 - Ļ†c) Ɨ 12/13

kut = (1.19 - Ļ†t) Ɨ 12/13

kub = Īµcu/(Īµcu + fyd/Es)

Mc = Ļ†ckucĪ²fcdc Ɨ (1 - kucĪ²/2) Ɨ (h/2 + zmin)2 - min(0, N) Ɨ zmin

Mt = Ļ†tkutĪ²fcdc Ɨ (1 - kutĪ²/2) Ɨ (h/2 + zmin)2 - min(0, N) Ɨ zmin

Nb = [Ļ†ckubĪ²fcdc Ɨ (1 - kubĪ²/2) Ɨ (h/2 + zmin)2 - M] / zmin

If

If

Otherwise:

If

If

Otherwise:

# Eurocode

These codes use partial safety factors on materials.

EN1992-1-1 2004 +A1:2014 EN1992-2 2005
Concrete strength
Steel strength
Partial safety factor on concrete = 1.5
[2.4.2.4(1)]
= 1.5
[2.4.2.4(1)]
Partial safety factor on steel = 1.15
[2.4.2.4(1)]
= 1.15
[2.4.2.4(1)]
Uncracked concrete design strength for rectangular stress blockĀ  50Ā MPaĀ Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā  /

> 50Ā MPaĀ Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā  (1 ā€‘ (-50)/200)
/

is an NDP*
[3.1.7(3)]
50Ā MPaĀ Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā  /

> 50Ā MPaĀ Ā Ā Ā Ā Ā Ā Ā Ā Ā  (1 ā€‘ (-50)/200)Ā 
/

is an NDP*
[3.1.7(3)]
Cracked concrete design strength (equal to twice the upper limit on shear strength) 0.6(1ā€‘/250) /
[6.2.2(6)]Ā Ā 
0.312(1ā€‘/250) /
[6.109 (103)iii]Ā Ā  (see also Ļ•Ī”)Ā Ā 
Concrete tensile design strength (used only to determine whether section cracked) 50Ā MPaĀ Ā Ā  0.21 2/3/

> 50Ā MPa 1.48 ln[1.8+ /10] /
is an NDP*Ā Ā 

[Table 3.1]Ā Ā 
50Ā MPaĀ Ā Ā  0.21 2/3/

> 50Ā MPa 1.48 ln[1.8+ /10] /
is an NDP*Ā 

[Table 3.1]Ā Ā 
Compressive plateau concrete strain 50Ā MPa 0.00175Ā Ā 

> 50Ā MPa 0.00175+ 0.00055 [(ā€‘50)/40]Ā Ā 

[Table 3.1]Ā Ā 
50Ā MPa 0.00175Ā Ā 

> 50Ā MPa 0.00175+ 0.00055 [(ā€‘50)/40]Ā Ā 

[Table 3.1]Ā Ā 
Maximum axial compressive concrete strain 50Ā MPa 0.00175Ā Ā 

> 50Ā MPa 0.00175+ 0.00055 [(ā€‘50)/40]Ā Ā 
[Table 3.1]Ā Ā 
50Ā MPa 0.00175Ā Ā 
> 50Ā MPa 0.00175+ 0.00055 [(ā€‘50)/40]Ā Ā 
[Table 3.1]Ā Ā 
Maximum flexural compressive concrete strain 50Ā MPa 0.0035Ā Ā 

> 50Ā MPa 0.0026+0.035 [(90ā€‘)/ 100]4Ā Ā 

[Table 3.1]Ā Ā 
50Ā MPa 0.0035Ā Ā 

> 50Ā MPa 0.0026+0.035 [(90ā€‘)/ 100]4Ā Ā 

[Table 3.1]Ā Ā 
Proportion of depth to neutral axis over which constant stress acts 50Ā MPaĀ Ā Ā Ā Ā Ā Ā  0.8Ā Ā 

> 50Ā MPaĀ Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā  0.8-(ā€‘50)/400Ā Ā 

[3.1.7(3)]Ā Ā 
50Ā MPaĀ Ā Ā Ā Ā Ā Ā  0.8Ā Ā 

> 50Ā MPaĀ Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā  0.8-(ā€‘50)/400Ā Ā 

[3.1.7(3)]Ā Ā 
Maximum value of ratio of depth to neutral axis to effective depth in flexural situationsĀ  50Ā MPaĀ Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā  (1- )/

> 50Ā MPaĀ Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā  (1- )/

,Ā  ,Ā  Ā  andĀ Ā  Ā  are NDPs*Ā Ā Ā Ā 
[5.5(4)]
50Ā MPaĀ Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā  (1- )/

> 50Ā MPaĀ Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā  (1- )/

,Ā  ,Ā  Ā  andĀ Ā  Ā  are NDPs*Ā Ā Ā Ā 
[5.5(104)]
Elastic modulus of steel 200Ā GPa

[3.2.7(4)]

200Ā GPa

[3.2.7(4)]

Design strength of reinforcement in tensionĀ  /
[3.2.7(2)]
/
[3.2.7(2)]
Design strength of reinforcement in compressionĀ  /
[3.2.7(2)]
/
[3.2.7(2)]
Maximum linear steel stressĀ  /
[3.2.7(2)]
/
[3.2.7(2)]
Yield strain in tension /( )
[3.2.7(2)]
/( )
[3.2.7(2)]
Yield strain in compression /( )
[3.2.7(2)]
/( )
[3.2.7(2)]
Design strain limit NDP*
[]

NDP*
[