# Code Related Data

Codes with strength reduction factors

Codes with partial safety factors on materials

Current tabular codes

Codes with resistance factor on materials

Superseeded codes with partial safety factors on materials

# American Codes

These codes use strength reduction factors.

ACI318-08 ACI318-11 ACI318-14
Concrete strength
Steel strength
Strength reduction factor for axial compression*  f = 0.65
[9.3.2.2]
f = 0.65
[9.3.2.2]
f = 0.65
[21.2.2]
Strength reduction factor for axial tension*  f = 0.9
[9.3.2.1]
f = 0.9
[9.3.2.1]
f = 0.9
[21.2.2]
Uncracked concrete design strength for rectangular stress block  0.85 
[10.2.7.1]

0.85 
[10.2.7.1]

0.85 
[22.2.2.4.1]

Cracked concrete design strength (equal to twice the upper limit on shear strength) (5/3)   (   in MPa)
20     (   in psi)
[11.2.1.1 & 11.4.7.9]
1.66    (   in MPa)
20     (    in psi)
[11.2.1.1 & 11.4.7.9
11.9.3]
1.66   (   in MPa)
20       (    in psi)
[11.5.4.3]
Concrete tensile design strength (used only to determine whether section cracked) (1/3)   (   in MPa)
4       (   in psi)
[11.3.3.2]
0.33    (   in MPa)
4       (   in psi)
[11.3.3.2]
0.33   (   in MPa)
4      (   in psi)
[22.5.8.3.3]
Compressive plateau concrete strain 0.002
[assumed]
0.002
[assumed]
0.002
[assumed]
Maximum axial compressive concrete strain 0.003
[10.2.3]
0.003
[10.2.3]
0.003
[22.2.2.1]
Maximum flexural compressive concrete strain 0.003
[10.2.3]
0.003
[10.2.3]
0.003
[22.2.2.1]
Proportion of depth to neutral axis over which constant stress acts 0.85-0.05( ‑30)/7
(   in MPa)
0.85- 0.05( /1000‑4)
(   in psi)
but within limits 0.65 to 0.85
[10.2.7.3]
0.85-0.05( ‑28)/7
(   in MPa)
0.85- 0.05( /1000‑4)
(   in psi)
but within limits 0.65 to 0.85
[10.2.7.3]
0.85-0.05( ‑28)/7
(   in MPa)
0.85- 0.05( /1000‑4)
(   in psi)
but within limits 0.65 to 0.85
[22.2.2.4.3]
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations 
[10.3.5]

[10.3.5]

[7.3.3.1 & 8.3.3.1]
Elastic modulus of steel 200 GPa
[8.5.2]
200 GPa
[8.5.2]
200 GPa
[20.2.2.2]
Design strength of reinforcement in tension 
[10.2.4]

[10.2.4]

[20.2.2.1]
Design strength of reinforcement in compression 
[10.2.4]

[10.2.4]

[20.2.2.1]
Maximum linear steel stress 
[10.2.4]

[10.2.4]

[20.2.2.1]
Yield strain in tension /
[10.2.4]
/
[10.2.4]
/
[20.2.2.1]
Yield strain in compression /
[10.2.4]
/
[10.2.4]
/
[20.2.2.1]
Design strain limit [0.01]
assumed
[0.01]
assumed
[0.01]
assumed
Maximum concrete strength - - -
Maximum steel strength -
-
-
Minimum eccentricity 0.10 h
[R10.3.6 & R10.3.7]
0.10 h
[R10.3.6 & R10.3.7]
0.10 h
[R22.4.2.1]
Minimum area compression reinforcement -

-

-

maximum permitted angle between applied and resulting principal stress - - -

*Applied forces and moments are divided by the strength reduction factor to obtain design values for use within RCSlab. The appropriate vales are determined as follows:

kuc = εcu/(εcu + fyd/Es)

kut = εcu/(εcu + 0.005)

Mc = φckucβfcdc × (1 - kucβ/2) × (h/2 + zmin)2 - N × zmin

Mt = φtkutβfcdc × (1 - kutβ/2) × (h/2 + zmin)2 - N × zmin

If

If

Otherwise:

# Australian Codes

This code uses strength reduction factors.

AS3600
Concrete strength
Steel strength
Strength reduction factor for axial compression*  f = 0.6
[Table 2.2.2]
Strength reduction factor for axial tension*  f = 0.8     (N bars)
f = 0.64   (L bars)
[Table 2.2.2]
Uncracked concrete design strength for rectangular stress block 
Where  = 1.00-0.003 
but within limits 0.67 to 0.85
[10.6.2.5(b)]
Cracked concrete design strength (equal to twice the upper limit on shear strength) 0.4 
[11.6.2]

Concrete tensile design strength (used only to determine whether section cracked) 0.36
[3.1.1.3]
Compressive plateau concrete strain 0.002
[assumed]
Maximum axial compressive concrete strain 0.0025
[10.6.2.2(b)]
Maximum flexural compressive concrete strain 0.003
[8.1.2.(d)]
Proportion of depth to neutral axis over which constant stress acts 1.05-0.007 
but within limits 0.67 to 0.85
[10.6.2.5(b)]



Maximum value of ratio of depth to neutral axis to effective depth in flexural situations  0.36
[8.1.5]
Elastic modulus of steel 200 GPa
[3.2.2(a)]
Design strength of reinforcement in tension 
[3.2.1]
Design strength of reinforcement in compression 
[3.2.1]
Maximum linear steel stress 
[3.2.1]
Yield strain in tension /
[3.2.1]
Yield strain in compression /
[3.2.1]
Design strain limit Class N 0.05
Class L 0.015
[3.2.1]
Maximum concrete strength -
Maximum steel strength   £ 500 MPa
[3.2.1]
Minimum eccentricity 0.05 h
[10.1.2]
Minimum area compression reinforcement 0.01
(0.5% each face)
[10.7.1 (a)]
Maximum permitted angle between applied and resulting principal stress -

*Applied forces and moments are divided by the strength reduction factor to obtain design values for use within RCSlab. The appropriate vales are determined as follows:

kuc = (1.19 - φc) × 12/13

kut = (1.19 - φt) × 12/13

kub = εcu/(εcu + fyd/Es)

Mc = φckucβfcdc × (1 - kucβ/2) × (h/2 + zmin)2 - min(0, N) × zmin

Mt = φtkutβfcdc × (1 - kutβ/2) × (h/2 + zmin)2 - min(0, N) × zmin

Nb = [φckubβfcdc × (1 - kubβ/2) × (h/2 + zmin)2 - M] / zmin

If

If

Otherwise:

If

If

Otherwise:

# Eurocode

These codes use partial safety factors on materials.

EN1992-1-1 2004 +A1:2014 EN1992-2 2005
Concrete strength
Steel strength
Partial safety factor on concrete = 1.5
[2.4.2.4(1)]
= 1.5
[2.4.2.4(1)]
Partial safety factor on steel = 1.15
[2.4.2.4(1)]
= 1.15
[2.4.2.4(1)]
Uncracked concrete design strength for rectangular stress block  50 MPa                               /

> 50 MPa            (1 ‑ (-50)/200)
/

is an NDP*
[3.1.7(3)]
50 MPa                 /

> 50 MPa           (1 ‑ (-50)/200) 
/

is an NDP*
[3.1.7(3)]
Cracked concrete design strength (equal to twice the upper limit on shear strength) 0.6(1‑/250) /
[6.2.2(6)]  
0.312(1‑/250) /
[6.109 (103)iii]   (see also ϕΔ)  
Concrete tensile design strength (used only to determine whether section cracked) 50 MPa    0.21 2/3/

> 50 MPa 1.48 ln[1.8+ /10] /
is an NDP*  

[Table 3.1]  
50 MPa    0.21 2/3/

> 50 MPa 1.48 ln[1.8+ /10] /
is an NDP* 

[Table 3.1]  
Compressive plateau concrete strain 50 MPa 0.00175  

> 50 MPa 0.00175+ 0.00055 [(‑50)/40]  

[Table 3.1]  
50 MPa 0.00175  

> 50 MPa 0.00175+ 0.00055 [(‑50)/40]  

[Table 3.1]  
Maximum axial compressive concrete strain 50 MPa 0.00175  

> 50 MPa 0.00175+ 0.00055 [(‑50)/40]  
[Table 3.1]  
50 MPa 0.00175  
> 50 MPa 0.00175+ 0.00055 [(‑50)/40]  
[Table 3.1]  
Maximum flexural compressive concrete strain 50 MPa 0.0035  

> 50 MPa 0.0026+0.035 [(90‑)/ 100]4  

[Table 3.1]  
50 MPa 0.0035  

> 50 MPa 0.0026+0.035 [(90‑)/ 100]4  

[Table 3.1]  
Proportion of depth to neutral axis over which constant stress acts 50 MPa        0.8  

> 50 MPa                   0.8-(‑50)/400  

[3.1.7(3)]  
50 MPa        0.8  

> 50 MPa                   0.8-(‑50)/400  

[3.1.7(3)]  
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations  50 MPa              (1- )/

> 50 MPa              (1- )/

  and     are NDPs*    
[5.5(4)]
50 MPa               (1- )/

> 50 MPa             (1- )/

  and     are NDPs*    
[5.5(104)]
Elastic modulus of steel 200 GPa

[3.2.7(4)]

200 GPa

[3.2.7(4)]

Design strength of reinforcement in tension  /
[3.2.7(2)]
/
[3.2.7(2)]
Design strength of reinforcement in compression  /
[3.2.7(2)]
/
[3.2.7(2)]
Maximum linear steel stress  /
[3.2.7(2)]
/
[3.2.7(2)]
Yield strain in tension /( )
[3.2.7(2)]
/( )
[3.2.7(2)]
Yield strain in compression /( )
[3.2.7(2)]
/( )
[3.2.7(2)]
Design strain limit NDP*
[]

NDP*
[]

Maximum concrete strength 90 MPa
[3.1.2(2)]
90 MPa
[3.1.2(2)]
Maximum steel strength 600 MPa
[3.2.2(3)]
600 MPa
[3.2.2(3)]
Minimum eccentricity max{h/30, 20 mm}
[6.1(4)]
max{h/30, 20 mm}
[6.1(4)]
Minimum area compression reinforcement - -
Maximum permitted angle between applied and resulting principal stress -

= 15°
[6.109 (103)iii]
(see also )

*NDPs are nationally determined parameters.

# Hong Kong Codes

These codes use partial safety factors on materials.

Hong Kong Buildings 2013 Hong Kong Structural Design Manual for Highways and Railways 2013
Concrete strength
Steel strength
Partial safety factor on concrete = 1.5
[Table 2.2]
= 1.5
[5.1]
Partial safety factor on steel = 1.15
[Table 2.2]
= 1.15
[5.1]
Uncracked concrete design strength for rectangular stress block  0.67/
[Figure 6.1]
0.67 /
[Figure 5.3]
Cracked concrete design strength (equal to twice the upper limit on shear strength) min{17.5, 2} / 0.55  
[6.1.2.5(a)]
0.6 (1‑0.8 /250) 0.8 /
[5.1]
Concrete tensile design strength (used only to determine whether section cracked) 0.36/
[12.3.8.4]
60 MPa            [0.025 + 0.6] /

> 60 MPa     2.1 /

[Table 5.1]
Compressive plateau concrete strain 0.002 
[assumed]
[0.026 + 1.1] /
[5.2.6(1) & Table 5.1]  
Maximum axial compressive concrete strain 60 MPa 0.0035  

> 60 MPa 0.0035- 0.00006 ‑60]  
[Figure 6.1]
[0.026,cube + 1.1] /
[5.2.6(1) & Table 5.1]  
Maximum flexural compressive concrete strain 60 MPa 0.0035  

> 60 MPa 0.0035- 0.00006 ‑60]  

[Figure 6.1]
,cube 60 MPa 0.0035  

,cube > 60 MPa 0.0035- 0.00006 ‑60]  

[5.2.6(1)]
Proportion of depth to neutral axis over which constant stress acts 45 MPa 0.9  

45 < 70 0.8  

> 70 MPa 0.72 

[Figure 6.1]
,cube 45 MPa      0.9  

45 < 70      0.8  

70 < ,cube 85     0.72   

[Figure 5.3]
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations  45 MPa   0.50  

45 < 70    0.40  

> 70 MPa   0.33 

[6.1.2.4(b)]
50 MPa 0.344  

> 50 MPa             0.6/{0.6 + 0.4/ (2.6 + 35[(90-)/100] )}  

[5.1]
Elastic modulus of steel 200 GPa
[Figure 3.9]
200 GPa
[5.1]
Design strength of reinforcement in tension  /
[Figure 3.9]
/
[5.1]
Design strength of reinforcement in compression  /
[Figure 3.9]
/
[5.1]
Maximum linear steel stress  /
[Figure 3.9]
/
[5.1]
Yield strain in tension /( )
[Figure 3.9]
/( )
[5.1]
Yield strain in compression /( )
[Figure 3.9]
/( )
[5.1]
Design strain limit (10 -1)×
[6.1.2.4(a) (v)]

Grade 250 0.45

Grade 500B 0.045

Grade 500C 0.0675

[5.1(1) & 5.3(1) CS2:2012 Table 5
UKNA EN1992-1-1]
Maximum concrete strength 100 MPa
[TR 1]
,cube 85 MPa
[5.2.1(2)]
Cmax
Maximum steel strength   = 500 MPa
[Table 3.1]
600 MPa
[5.1]
Minimum eccentricity min{h/20, 20 mm}
[6.2.1.1(d)]
max{h/30, 20 mm}
[5.1]
Minimum area compression reinforcement - -
Maximum permitted angle between applied and resulting principal stress -

-

# Indian Codes

These codes use partial safety factors on materials.

Indian concrete road bridge IRC:112 2011 Indian concrete rail bridge IRS 1997 Indian building IS456
Concrete strength
Steel strength
Partial safety factor on concrete = 1.5
[A2.10]
= 1.5
[15.4.2.1(b)]
= 1.5
[36.4.2.1]
Partial safety factor on steel = 1.15
[Fig 6.2]
= 1.15
[15.4.2.1(d)]
= 1.15
[36.4.2.1]
Uncracked concrete design strength for rectangular stress block  60 MPa    0.67/

> 60 MPa  (1.24‑/250) 0.67/

[6.4.2.8 A2.9(2)]
0.60/
[15.4.2.1(b)]
0.67/
[Figure 21]
Cracked concrete design strength (equal to twice the upper limit on shear strength) 80 MPa    0.6 0.67/

80 MPa < 100 MPa    (0.9-/250) 0.67

/ > 100 MPa    0.5 0.67/

[10.3.3.2]  
min {11.875, 1.875 }/  0.55  
[15.4.3.1]
1.6  0.55  
[Table 20]
Concrete tensile design strength (used only to determine whether section cracked) 60 MPa    0.1813 2/3/

> 60 MPa 1.589 ln[1.8+ /12.5]/

[A2.2]  
0.36/

[16.4.4.2]
0.5/

[From 6.2.2 (70% of  SLS value / )]
Compressive plateau concrete strain 60 MPa 0.0018  

> 60 MPa 0.00175+ 0.00055 [(0.8‑50)/ 40]  

[Table 6.5 & A2.2]  
0.002  
[assumed]
0.002  
[Figure 21]
Maximum axial compressive concrete strain 60 MPa 0.0018  

> 60 MPa 0.00175+ 0.00055
[(0.8‑50)/ 40]   [Table 6.5 & A2.2]  
0.0035  
[15.4.2.1(b)]
0.002  
[39.1a]
Maximum flexural compressive concrete strain 60 MPa 0.0035  

> 60 MPa 0.0026+0.035 [(90‑0.8)/ 100]4  

[Table 6.5 & A2.2]  
0.0035  
[15.4.2.1(b)]
0.0035  
[38.1b]
Proportion of depth to neutral axis over which constant stress acts 60 MPa        0.8  

> 60 MPa     0.8-(‑60)/500   [A2.9(2)]  

[15.4.2.1(b)]
0.84  
[38.1c]
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations  [upper limit] $1/{1+frac{\epsilon_{s}}{\epsilon_{cu})  
where = 0.002 +

[15.4.2.1(d)]
fy = 250 0.53  
fy = 415 0.48  
fy = 500 0.46  
[38.1f]  
Elastic modulus of steel 200 GPa
[6.2.2]
200 GPa
[Figure 4B]
200 GPa
[Figure 23B]
Design strength of reinforcement in tension  /
[6.2.2]
/
[Figure 4B]
/
[Figure 23B]
Design strength of reinforcement in compression  /
[6.2.2]
( / )/[1+ ( / )/ 2000]
[15.6.3.3]
c/
/
[Figure 23B]
Maximum linear steel stress  /
[6.2.2]
0.8 /
[Figure 4B]
/
[Figure 23B]
Yield strain in tension /( )
[6.2.2]
/( ) + 0.002
[Figure 4B]
/( )
[Figure 23B]
Yield strain in compression /( )
[6.2.2]
0.002
[assumed]
/( )
[Figure 23B]
Design strain limit [0.01]
assumed

[0.01]
assumed

[0.01]
assumed

Maximum concrete strength 110 MPa
[A2.9(2)]
60 MPa
[Table 2]
80 MPa
[Table 2]
Maximum steel strength 600 MPa
[Table 6.1]
-
500 MPa
[5.6]
Minimum eccentricity 0.05 h
[7.6.4.2]
min{0.05 h, 20 mm}
[15.6.3.1]
max{h/30, 20 mm}
[25.4]
Minimum area compression reinforcement - - -
Maximum permitted angle between applied and resulting principal stress -

-

-

# Chinese Codes

PR China GB 50010 2002
Characteristic concrete cube strength   (value after ‘C’ in grade description)
Characteristic steel strength   – related to bar type in Table 4.2.2-1
Design concrete strength    - related to    in Table 4.1.4
Uncracked concrete design strength for rectangular stress block


50 MPa                
  > 50 MPa                  [1 - 0.002( -50)]×
[7.1.3]
Cracked concrete design strength (equal to twice the upper limit on shear strength)


50 MPa           0.4
  > 50 MPa                0.4×[1 - 0.00667( -50)]×
[7.5.1]
0.4
Concrete tensile design strength (used only to determine whether section cracked)
   - related to    in Table 4.1.4
Compressive plateau concrete strain


  ≤ 50 MPa          0.002
  > 50 MPa             0.02 + 0.5( -50)×10‑5
[7.1.2]
Maximum axial compressive concrete strain


  ≤ 50 MPa          0.002
  > 50 MPa             0.02 + 0.5( -50)×10‑5
[7.1.2]
Maximum flexural compressive concrete strain


  ≤ 50 MPa        0.0033
  > 50 MPa          0.0033 - ( -50)×10-5
[7.1.2]
Proportion of depth to neutral axis over which constant stress acts

  ≤ 50 MPa              0.8
  > 50 MPa             0.8-0.002( -50)
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations

/[1+ /( )]
[7.1.4 & 7.2.1]
Elastic modulus of steel


  < 300 MPa      210 GPa
  ≥ 300 MPa      200 GPa
[4.2.4]
Design strength of reinforcement in tension
  – related to    in  Table 4.2.3
Design strength of reinforcement in compression
  – related to    in Table 4.2.3
Maximum linear steel stress
  – related to    in  Table 4.2.3
Yield strain in tension
/
Yield strain in compression
/
Design strain limit
0.01
[7.1.2(4)]
Maximum concrete strength
80 MPa
[Table 4.1.3]
Maximum steel strength
400 MPa
[Table  4.2.2-1]
Minimum eccentricity
max{h/30, 20 mm}
[7.3.3]
Minimum area compression reinforcement
0.2% each face
[Table 9.5.1]
Maximum permitted angle between applied and resulting principal stress
-

# Canadian Codes

These codes use resistance factors on materials.

CSA A23.3-04 CSA A23.3-14 CSA S6-14
Compulsory input parameters
Concrete strength
Steel strength
Code parameters that can be overwritten
Resistance factor on concrete
  = 0.65
[8.4.2]
  = 0.65
[8.4.2]
  = 0.75
[8.4.6]
Resistance factor on steel
  = 0.85
[8.4.3(a)]
  = 0.85
[8.4.3(a)]
  = 0.9
[8.4.6]
Derived parameters that can be overwritten
Uncracked concrete design strength for rectangular stress block
Max{0.67, 0.85‑0.0015 }
[10.1.7]
Max{0.67, 0.85‑0.0015 }
[10.1.7]
Max{0.67, 0.85‑0.0015 }
[8.8.3(f)]
Cracked concrete design strength (equal to twice the upper limit on shear strength)
0.5
[11.3.3]
0.4
[21.6.3.5]
0.5
[8.9.3.3]
Concrete tensile design strength (used only to determine whether section cracked)
0.37   $\sqrt{ }
[22.4.1.2]
0.37   $\sqrt{ }
[22.4.1.2]
0.4   $\sqrt{ }
[8.4.1.8.1]
Compressive plateau concrete strain
0.002
[assumed]
0.002
[assumed]
0.002
[assumed]
Maximum axial compressive concrete strain
0.0035
[10.1.3]
0.0035
[10.1.3]
0.0035
[8.8.3(c)]
Maximum flexural compressive concrete strain
0.0035
[10.1.3]
0.0035
[10.1.3]
0.0035
  [8.8.3(c)]
Proportion of depth to neutral axis over which constant stress acts

Max{0.67, 0.97‑0.0025 }
[10.1.7(c)]
Max{0.67, 0.97‑0.0025 }
[10.1.7(c)]
Max{0.67, 0.97‑0.0025 }
  [8.8.3(f)]
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations
[upper limit]
[upper limit]
[upper limit]
Elastic modulus of steel
  200 GPa
[8.5.3.2 & 8.5.4.1]
  200 GPa
[8.5.3.2 & 8.5.4.1]
  200 GPa
[8.4.2.1.4 & 8.8.3(d)]
Design strength of reinforcement in tension

[8.5.3.2]

[8.5.3.2]

[8.4.2.1.4 & 8.8.3(d)]
Design strength of reinforcement in compression

[8.5.3.2]

[8.5.3.2]

[8.4.2.1.4 & 8.8.3(d)]
Maximum linear steel stress

[8.5.3.2]

[8.5.3.2]

[8.4.2.1.4 & 8.8.3(d)]
Yield strain in tension
/
[8.5.3.2]
/
[8.5.3.2]
/
[8.4.2.1.4]
Yield strain in compression
/
[8.5.3.2]
/
[8.5.3.2]
/
[8.4.2.1.4]
Design strain limit
[0.01]
assumed
[0.01]
assumed
[0.01]
assumed
Other parameters
Maximum concrete strength
  80 MPa
[8.6.1.1]
  80 MPa
[8.6.1.1]
  85 MPa
[8.4.12]
Maximum steel strength
  = 500 MPa
[8.5.1]
  = 500 MPa
[8.5.1]
  = 500 MPa
[8.4.2.1.3]
Minimum eccentricity
0.03h + 15 mm
[10.15.3.1]
0.03h + 15 mm
[10.15.3.1]
0.03h + 15 mm
[8.8.5.3(g)]
Minimum area compression reinforcement - - -

# Superseeded Codes

Concrete strength Steel strength Partial safety factor on concrete
Partial safety factor on steel
Uncracked concrete design strength for rectangular stress block
Cracked concrete design strength (equal to twice the upper limit on shear strength)
Concrete tensile design strength (used only to determine whether section cracked)
Compressive plateau concrete strain
Maximum axial compressive concrete strain


Maximum flexural compressive concrete strain

Proportion of depth to neutral axis over which constant stress acts


Maximum value of ratio of depth to neutral axis to effective depth in flexural situations



Elastic modulus of steel

Design strength of reinforcement in tension
Design strength of reinforcement in compression
Maximum linear steel stress
Yield strain in tension
Yield strain in compression
Design strain limit
Maximum concrete strength
Maximum steel strength
Minimum eccentricity
Minimum area compression reinforcement Maximum permitted angle between applied and resulting principal stress
BS8110 1997* & Concrete Society TR49   = 1.5
[2.4.4.1]
  = 1.05
[2.4.4.1]
0.67  /
[Figure 3.3]
2 0.55
[3.4.5.2 & TR 3.1.4]
0.36
[4.3.8.4]
0.002
[assumed]
  60 MPa 0.0035
  > 60 MPa 0.0035- 0.001´ [( ‑60)/50]
[TR49 3.1.3]
  60 MPa 0.0035
  > 60 MPa 0.0035- 0.001´ [( ‑60)/50]
[TR49 3.1.3]
0.9
[Figure 3.3]

[upper limit]



200 GPa
[Figure 2.2]
/
[Figure 2.2]
/
[Figure 2.2]
/
[Figure 2.2]
/( )
[Figure 2.2]
/( )
[Figure 2.2]
(10 -1)
[3.4.4.1(e)]
  100 MPa
[TR 1]
  = 460 MPa
[Table 3.1]
min{h/20, 20 mm}
[3.9.3.3]
- -
BS8110 1997 (Rev 2005) & Concrete Society TR49   = 1.5
[2.4.4.1]
  = 1.15
[2.4.4.1]
0.67  /
[Figure 3.3]
2 0.55
[3.4.5.2 & TR 3.1.4]
0.36
[4.3.8.4]
0.002
[assumed]
  60 MPa 0.0035
  > 60 MPa 0.0035- 0.001´ [( ‑60)/50]
[TR49 3.1.3]
  60 MPa 0.0035
  > 60 MPa 0.0035- 0.001´ [( ‑60)/50]
[TR49 3.1.3]
0.9
[Figure 3.3]

[upper limit]



200 GPa
[Figure 2.2]
/
[Figure 2.2]
/
[Figure 2.2]
/
[Figure 2.2]
/( )
[Figure 2.2]
/( )
[Figure 2.2]
(10 -1)
[3.4.4.1(e)]
  100 MPa
[TR 1]
  = 500 MPa
[Table 3.1]
min{h/20, 20 mm}
[3.9.3.3]
- -
BS5400 Part 4 & Concrete Society TR49   = 1.5
[4.3.3.3]
  = 1.15
[4.3.3.3]
0.60  /
[5.3.2.1(b)]
min {11.875, 1.875 }/  0.55
[5.3.3.3]
0.36
[6.3.4.2]
0.002
[assumed]
  60 MPa 0.0035
[5.3.2.1(b)]
  > 60 MPa 0.0035- 0.001´ [( ‑60)/50]
[TR49 3.1.3]
0.0035
[5.3.2.1(b)]
1
[5.3.2.1(b)]


where

[5.3.2.1(d)]
200 GPa
[Figure 2]
/
[Figure 2]
( / )/[1+ ( / )/ 2000]
[Figure 2]
0.8 /
[Figure 2]
/( ) + 0.002
[Figure 2]
0.002
[Figure 2]
([0.01]
assumed
-
-
0.05h
[5.6.2]
- -
Hong Kong Buildings 2004#   = 1.5
[Table 2.2]
  = 1.15
[Table 2.2]
0.67  /
[Figure 6.1]
min{17.5, 2 } / 0.55
[6.1.2.5(a)]
0.36
[12.3.8.4]
0.002
[assumed]
  60 MPa 0.0035
  > 60 MPa 0.0035- 0.00006´ 
[Figure 6.1]
  60 MPa 0.0035
  > 60 MPa 0.0035- 0.00006´ 
[Figure 6.1]
0.9
[Figure 6.1]

  ≤ 45 MPa 0.50
45 <    ≤ 70 0.40
  > 70 MPa 0.33
[6.1.2.4(b)]
200 GPa
[Figure 3.9]
/
[Figure 3.9]
/
[Figure 3.9]
/
[Figure 3.9]
/( )
[Figure 3.9]
/( )
[Figure 3.9]
(10 -1)
[6.1.2.4(a)]
  100 MPa
[TR 1]
  = 500 MPa
[Table 3.1]
min{h/20, 20 mm}
[3.9.3.3]
- -
Hong Kong Buildings 2004 AMD1 2007   = 1.5
[Table 2.2]
  = 1.15
[Table 2.2]
0.67  /
[Figure 6.1]
min{17.5, 2 } / 0.55
[6.1.2.5(a)]
0.36
[12.3.8.4]
0.002
[assumed]
  60 MPa 0.0035
  > 60 MPa 0.0035- 0.00006´ 
[Figure 6.1]
  60 MPa 0.0035
  > 60 MPa 0.0035- 0.00006´ 
[Figure 6.1]
  ≤ 45 MPa 0.9
45 <    ≤ 70 0.8
  > 70 MPa 0.72
[Figure 6.1]
  ≤ 45 MPa 0.50
45 <    ≤ 70 0.40
  > 70 MPa 0.33
[6.1.2.4(b)]
200 GPa
[Figure 3.9]
/
[Figure 3.9]
/
[Figure 3.9]
/
[Figure 3.9]
/( )
[Figure 3.9]
/( )
[Figure 3.9]
(10 -1)
[6.1.2.4(a)]
  80 MPa
[Table 2]
  = 500 MPa
[Table 3.1]
min{h/20, 20 mm}
[6.2.1.1(d)]
- -
Hong Kong Highways 2006   = 1.5
[4.3.3.3]
  = 1.15
[4.3.3.3]
0.60  /
[5.3.2.1(b)]
min {11.875, 1.875 }/  0.55
[5.3.3.3]
0.36
[6.3.4.2]
0.002
[assumed]
0.0035
[5.3.2.1(b)]

0.0035
[5.3.2.1(b)]
1
[5.3.2.1(b)]


where

[5.3.2.1(d)]
200 GPa
[Figure 2]
/
[Figure 2]
( / )/[1+ ( / )/ 2000]
[Figure 2]
0.8 /
[Figure 2]
/( ) + 0.002
[Figure 2]
0.002
[Figure 2]
[0.01]
assumed
-
-
0.05h
[5.6.2]
- -

*BS8110: 1985 is similar to BS8110: 1997 but with a value of 1.15 for .

#Hong Kong 1987 code is similar to BS8110: 1985.