# Code Related Data
Codes with strength reduction factors
Codes with partial safety factors on materials
- EN1992-1-1 2004 +A1:2014
- EN1992-2 2005
- Hong Kong Buildings 2013
- Hong Kong Structural Design Manual for Highways and Railways 2013
- Indian concrete road bridge IRC:112 2011
- Indian concrete rail bridge IRS 1997
- Indian building IS456
Current tabular codes
Codes with resistance factor on materials
Superseeded codes with partial safety factors on materials
- BS8110 1997 & Concrete Society TR49
- BS8110 1997 (Rev 2005) & Concrete Society TR49
- BS5400 Part 4 & Concrete Society TR49
- Hong Kong Buildings 2004
- Hong Kong Buildings 2004 AMD1 2007
- Hong Kong Highways 2006
# American Codes
These codes use strength reduction factors.
ACI318-08 | ACI318-11 | ACI318-14 | |
---|---|---|---|
Concrete strength | |||
Steel strength | |||
Strength reduction factor for axial compression* | f = 0.65 [9.3.2.2] | f = 0.65 [9.3.2.2] | f = 0.65 [21.2.2] |
Strength reduction factor for axial tension* | f = 0.9 [9.3.2.1] | f = 0.9 [9.3.2.1] | f = 0.9 [21.2.2] |
Uncracked concrete design strength for rectangular stress block | 0.85 [10.2.7.1] | 0.85 [10.2.7.1] | 0.85 [22.2.2.4.1] |
Cracked concrete design strength (equal to twice the upper limit on shear strength) | (5/3) 20 [11.2.1.1 & 11.4.7.9] | 1.66 20 [11.2.1.1 & 11.4.7.9 11.9.3] | 1.66 20 [11.5.4.3] |
Concrete tensile design strength (used only to determine whether section cracked) | (1/3) 4 [11.3.3.2] | 0.33 4 [11.3.3.2] | 0.33 4 [22.5.8.3.3] |
Compressive plateau concrete strain | 0.002 [assumed] | 0.002 [assumed] | 0.002 [assumed] |
Maximum axial compressive concrete strain | 0.003 [10.2.3] | 0.003 [10.2.3] | 0.003 [22.2.2.1] |
Maximum flexural compressive concrete strain | 0.003 [10.2.3] | 0.003 [10.2.3] | 0.003 [22.2.2.1] |
Proportion of depth to neutral axis over which constant stress acts | 0.85-0.05( ( 0.85- 0.05( ( but within limits 0.65 to 0.85 [10.2.7.3] | 0.85-0.05( ( 0.85- 0.05( ( but within limits 0.65 to 0.85 [10.2.7.3] | 0.85-0.05( ( 0.85- 0.05( ( but within limits 0.65 to 0.85 [22.2.2.4.3] |
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations | [10.3.5] | [10.3.5] | [7.3.3.1 & 8.3.3.1] |
Elastic modulus of steel | 200 GPa [8.5.2] | 200 GPa [8.5.2] | 200 GPa [20.2.2.2] |
Design strength of reinforcement in tension | [10.2.4] | [10.2.4] | [20.2.2.1] |
Design strength of reinforcement in compression | [10.2.4] | [10.2.4] | [20.2.2.1] |
Maximum linear steel stress | [10.2.4] | [10.2.4] | [20.2.2.1] |
Yield strain in tension | [10.2.4] | [10.2.4] | [20.2.2.1] |
Yield strain in compression | [10.2.4] | [10.2.4] | [20.2.2.1] |
Design strain limit | [0.01] assumed | [0.01] assumed | [0.01] assumed |
Maximum concrete strength | - | - | - |
Maximum steel strength | - | - | - |
Minimum eccentricity | 0.10 h [R10.3.6 & R10.3.7] | 0.10 h [R10.3.6 & R10.3.7] | 0.10 h [R22.4.2.1] |
Minimum area compression reinforcement | - | - | - |
maximum permitted angle between applied and resulting principal stress | - | - | - |
*Applied forces and moments are divided by the strength reduction factor to obtain design values for use within RCSlab. The appropriate vales are determined as follows:
kuc = εcu/(εcu + fyd/Es)
kut = εcu/(εcu + 0.005)
Mc = φckucβfcdc × (1 - kucβ/2) × (h/2 + zmin)2 - N × zmin
Mt = φtkutβfcdc × (1 - kutβ/2) × (h/2 + zmin)2 - N × zmin
If
If
Otherwise:
# Australian Codes
This code uses strength reduction factors.
AS3600 | |
---|---|
Concrete strength | |
Steel strength | |
Strength reduction factor for axial compression* | f = 0.6 [Table 2.2.2] |
Strength reduction factor for axial tension* | f = 0.8 (N bars) f = 0.64 (L bars) [Table 2.2.2] |
Uncracked concrete design strength for rectangular stress block | Where but within limits 0.67 to 0.85 [10.6.2.5(b)] |
Cracked concrete design strength (equal to twice the upper limit on shear strength) | 0.4 [11.6.2] |
Concrete tensile design strength (used only to determine whether section cracked) | 0.36 [3.1.1.3] |
Compressive plateau concrete strain | 0.002 [assumed] |
Maximum axial compressive concrete strain | 0.0025 [10.6.2.2(b)] |
Maximum flexural compressive concrete strain | 0.003 [8.1.2.(d)] |
Proportion of depth to neutral axis over which constant stress acts | 1.05-0.007 but within limits 0.67 to 0.85 [10.6.2.5(b)] |
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations | 0.36 [8.1.5] |
Elastic modulus of steel | 200 GPa [3.2.2(a)] |
Design strength of reinforcement in tension | [3.2.1] |
Design strength of reinforcement in compression | [3.2.1] |
Maximum linear steel stress | [3.2.1] |
Yield strain in tension | [3.2.1] |
Yield strain in compression | [3.2.1] |
Design strain limit | Class N 0.05 Class L 0.015 [3.2.1] |
Maximum concrete strength | - |
Maximum steel strength | [3.2.1] |
Minimum eccentricity | 0.05 h [10.1.2] |
Minimum area compression reinforcement | 0.01 (0.5% each face) [10.7.1 (a)] |
Maximum permitted angle between applied and resulting principal stress | - |
*Applied forces and moments are divided by the strength reduction factor to obtain design values for use within RCSlab. The appropriate vales are determined as follows:
kuc = (1.19 - φc) × 12/13
kut = (1.19 - φt) × 12/13
kub = εcu/(εcu + fyd/Es)
Mc = φckucβfcdc × (1 - kucβ/2) × (h/2 + zmin)2 - min(0, N) × zmin
Mt = φtkutβfcdc × (1 - kutβ/2) × (h/2 + zmin)2 - min(0, N) × zmin
Nb = [φckubβfcdc × (1 - kubβ/2) × (h/2 + zmin)2 - M] / zmin
If
If
Otherwise:
If
If
Otherwise:
# Eurocode
These codes use partial safety factors on materials.
EN1992-1-1 2004 +A1:2014 | EN1992-2 2005 | |
---|---|---|
Concrete strength | ||
Steel strength | ||
Partial safety factor on concrete | [2.4.2.4(1)] | [2.4.2.4(1)] |
Partial safety factor on steel | [2.4.2.4(1)] | [2.4.2.4(1)] |
Uncracked concrete design strength for rectangular stress block | [3.1.7(3)] | [3.1.7(3)] |
Cracked concrete design strength (equal to twice the upper limit on shear strength) | 0.6 [6.2.2(6)] | 0.312 [6.109 (103)iii] (see also ϕΔ) |
Concrete tensile design strength (used only to determine whether section cracked) | [Table 3.1] | [Table 3.1] |
Compressive plateau concrete strain | [Table 3.1] | [Table 3.1] |
Maximum axial compressive concrete strain | [Table 3.1] | [Table 3.1] |
Maximum flexural compressive concrete strain | [Table 3.1] | [Table 3.1] |
Proportion of depth to neutral axis over which constant stress acts | [3.1.7(3)] | [3.1.7(3)] |
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations | [5.5(4)] | [5.5(104)] |
Elastic modulus of steel | 200 GPa [3.2.7(4)] | 200 GPa [3.2.7(4)] |
Design strength of reinforcement in tension | [3.2.7(2)] | [3.2.7(2)] |
Design strength of reinforcement in compression | [3.2.7(2)] | [3.2.7(2)] |
Maximum linear steel stress | [3.2.7(2)] | [3.2.7(2)] |
Yield strain in tension | [3.2.7(2)] | [3.2.7(2)] |
Yield strain in compression | [3.2.7(2)] | [3.2.7(2)] |
Design strain limit | NDP* [ | NDP* [ |
Maximum concrete strength | [3.1.2(2)] | [3.1.2(2)] |
Maximum steel strength | [3.2.2(3)] | [3.2.2(3)] |
Minimum eccentricity | max{h/30, 20 mm} [6.1(4)] | max{h/30, 20 mm} [6.1(4)] |
Minimum area compression reinforcement | - | - |
Maximum permitted angle between applied and resulting principal stress | - | [6.109 (103)iii] (see also |
*NDPs are nationally determined parameters.
# Hong Kong Codes
These codes use partial safety factors on materials.
Hong Kong Buildings 2013 | Hong Kong Structural Design Manual for Highways and Railways 2013 | |
---|---|---|
Concrete strength | ||
Steel strength | ||
Partial safety factor on concrete | [Table 2.2] | [5.1] |
Partial safety factor on steel | [Table 2.2] | [5.1] |
Uncracked concrete design strength for rectangular stress block | 0.67 [Figure 6.1] | 0.67 [Figure 5.3] |
Cracked concrete design strength (equal to twice the upper limit on shear strength) | min{17.5, 2 [6.1.2.5(a)] | 0.6 [5.1] |
Concrete tensile design strength (used only to determine whether section cracked) | 0.36 [12.3.8.4] | [Table 5.1] |
Compressive plateau concrete strain | 0.002 [assumed] | [0.026 [5.2.6(1) & Table 5.1] |
Maximum axial compressive concrete strain | [Figure 6.1] | [0.026 [5.2.6(1) & Table 5.1] |
Maximum flexural compressive concrete strain | [Figure 6.1] | [5.2.6(1)] |
Proportion of depth to neutral axis over which constant stress acts | 45 < [Figure 6.1] | 45 < 70 < [Figure 5.3] |
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations | 45 < [6.1.2.4(b)] | [5.1] |
Elastic modulus of steel | 200 GPa [Figure 3.9] | 200 GPa [5.1] |
Design strength of reinforcement in tension | [Figure 3.9] | [5.1] |
Design strength of reinforcement in compression | [Figure 3.9] | [5.1] |
Maximum linear steel stress | [Figure 3.9] | [5.1] |
Yield strain in tension | [Figure 3.9] | [5.1] |
Yield strain in compression | [Figure 3.9] | [5.1] |
Design strain limit | (10 [6.1.2.4(a) (v)] | Grade 250 0.45 Grade 500B 0.045 Grade 500C 0.0675 [5.1(1) & 5.3(1) CS2:2012 Table 5 UKNA EN1992-1-1] |
Maximum concrete strength | [TR 1] | [5.2.1(2)] Cmax |
Maximum steel strength | [Table 3.1] | [5.1] |
Minimum eccentricity | min{h/20, 20 mm} [6.2.1.1(d)] | max{h/30, 20 mm} [5.1] |
Minimum area compression reinforcement | - | - |
Maximum permitted angle between applied and resulting principal stress | - | - |
# Indian Codes
These codes use partial safety factors on materials.
Indian concrete road bridge IRC:112 2011 | Indian concrete rail bridge IRS 1997 | Indian building IS456 | |
---|---|---|---|
Concrete strength | |||
Steel strength | |||
Partial safety factor on concrete | [A2.10] | [15.4.2.1(b)] | [36.4.2.1] |
Partial safety factor on steel | [Fig 6.2] | [15.4.2.1(d)] | [36.4.2.1] |
Uncracked concrete design strength for rectangular stress block | [6.4.2.8 A2.9(2)] | 0.60 [15.4.2.1(b)] | 0.67 [Figure 21] |
Cracked concrete design strength (equal to twice the upper limit on shear strength) | 80 MPa < [10.3.3.2] | min {11.875, 1.875 [15.4.3.1] | 1.6 [Table 20] |
Concrete tensile design strength (used only to determine whether section cracked) | [A2.2] | 0.36 [16.4.4.2] | 0.5 [From 6.2.2 (70% of SLS value / |
Compressive plateau concrete strain | [Table 6.5 & A2.2] | 0.002 [assumed] | 0.002 [Figure 21] |
Maximum axial compressive concrete strain | [(0.8 | 0.0035 [15.4.2.1(b)] | 0.002 [39.1a] |
Maximum flexural compressive concrete strain | [Table 6.5 & A2.2] | 0.0035 [15.4.2.1(b)] | 0.0035 [38.1b] |
Proportion of depth to neutral axis over which constant stress acts | 1 [15.4.2.1(b)] | 0.84 [38.1c] | |
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations | [upper limit] | $1/{1+frac{\epsilon_{s}}{\epsilon_{cu}) where [15.4.2.1(d)] | fy = 250 0.53 fy = 415 0.48 fy = 500 0.46 [38.1f] |
Elastic modulus of steel | 200 GPa [6.2.2] | 200 GPa [Figure 4B] | 200 GPa [Figure 23B] |
Design strength of reinforcement in tension | [6.2.2] | [Figure 4B] | [Figure 23B] |
Design strength of reinforcement in compression | [6.2.2] | ( [15.6.3.3] | [Figure 23B] |
Maximum linear steel stress | [6.2.2] | 0.8 [Figure 4B] | [Figure 23B] |
Yield strain in tension | [6.2.2] | [Figure 4B] | [Figure 23B] |
Yield strain in compression | [6.2.2] | 0.002 [assumed] | [Figure 23B] |
Design strain limit | [0.01] assumed | [0.01] assumed | [0.01] assumed |
Maximum concrete strength | [A2.9(2)] | [Table 2] | [Table 2] |
Maximum steel strength | [Table 6.1] | - | [5.6] |
Minimum eccentricity | 0.05 h [7.6.4.2] | min{0.05 h, 20 mm} [15.6.3.1] | max{h/30, 20 mm} [25.4] |
Minimum area compression reinforcement | - | - | - |
Maximum permitted angle between applied and resulting principal stress | - | - | - |
# Chinese Codes
PR China GB 50010 2002 | |
---|---|
Characteristic concrete cube strength | |
Characteristic steel strength | |
Design concrete strength | |
Uncracked concrete design strength for rectangular stress block | [7.1.3] |
Cracked concrete design strength (equal to twice the upper limit on shear strength) | [7.5.1] 0.4 |
Concrete tensile design strength (used only to determine whether section cracked) | |
Compressive plateau concrete strain | [7.1.2] |
Maximum axial compressive concrete strain | [7.1.2] |
Maximum flexural compressive concrete strain | [7.1.2] |
Proportion of depth to neutral axis over which constant stress acts | |
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations | [7.1.4 & 7.2.1] |
Elastic modulus of steel | [4.2.4] |
Design strength of reinforcement in tension | |
Design strength of reinforcement in compression | |
Maximum linear steel stress | |
Yield strain in tension | |
Yield strain in compression | |
Design strain limit | 0.01 [7.1.2(4)] |
Maximum concrete strength | [Table 4.1.3] |
Maximum steel strength | [Table 4.2.2-1] |
Minimum eccentricity | max{h/30, 20 mm} [7.3.3] |
Minimum area compression reinforcement | 0.2% each face [Table 9.5.1] |
Maximum permitted angle between applied and resulting principal stress | - |
# Canadian Codes
These codes use resistance factors on materials.
CSA A23.3-04 | CSA A23.3-14 | CSA S6-14 | |
---|---|---|---|
Compulsory input parameters | |||
Concrete strength | |||
Steel strength | |||
Code parameters that can be overwritten | |||
Resistance factor on concrete | [8.4.2] | [8.4.2] | [8.4.6] |
Resistance factor on steel | [8.4.3(a)] | [8.4.3(a)] | [8.4.6] |
Derived parameters that can be overwritten | |||
Uncracked concrete design strength for rectangular stress block | Max{0.67, 0.85‑0.0015 [10.1.7] | Max{0.67, 0.85‑0.0015 [10.1.7] | Max{0.67, 0.85‑0.0015 [8.8.3(f)] |
Cracked concrete design strength (equal to twice the upper limit on shear strength) | 0.5 [11.3.3] | 0.4 [21.6.3.5] | 0.5 [8.9.3.3] |
Concrete tensile design strength (used only to determine whether section cracked) | 0.37 [22.4.1.2] | 0.37 [22.4.1.2] | 0.4 [8.4.1.8.1] |
Compressive plateau concrete strain | 0.002 [assumed] | 0.002 [assumed] | 0.002 [assumed] |
Maximum axial compressive concrete strain | 0.0035 [10.1.3] | 0.0035 [10.1.3] | 0.0035 [8.8.3(c)] |
Maximum flexural compressive concrete strain | 0.0035 [10.1.3] | 0.0035 [10.1.3] | 0.0035 [8.8.3(c)] |
Proportion of depth to neutral axis over which constant stress acts | Max{0.67, 0.97‑0.0025 [10.1.7(c)] | Max{0.67, 0.97‑0.0025 [10.1.7(c)] | Max{0.67, 0.97‑0.0025 [8.8.3(f)] |
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations | [upper limit] | [upper limit] | [upper limit] |
Elastic modulus of steel | [8.5.3.2 & 8.5.4.1] | [8.5.3.2 & 8.5.4.1] | [8.4.2.1.4 & 8.8.3(d)] |
Design strength of reinforcement in tension | [8.5.3.2] | [8.5.3.2] | [8.4.2.1.4 & 8.8.3(d)] |
Design strength of reinforcement in compression | [8.5.3.2] | [8.5.3.2] | [8.4.2.1.4 & 8.8.3(d)] |
Maximum linear steel stress | [8.5.3.2] | [8.5.3.2] | [8.4.2.1.4 & 8.8.3(d)] |
Yield strain in tension | [8.5.3.2] | [8.5.3.2] | [8.4.2.1.4] |
Yield strain in compression | [8.5.3.2] | [8.5.3.2] | [8.4.2.1.4] |
Design strain limit | [0.01] assumed | [0.01] assumed | [0.01] assumed |
Other parameters | |||
Maximum concrete strength | [8.6.1.1] | [8.6.1.1] | [8.4.12] |
Maximum steel strength | [8.5.1] | [8.5.1] | [8.4.2.1.3] |
Minimum eccentricity | 0.03h + 15 mm [10.15.3.1] | 0.03h + 15 mm [10.15.3.1] | 0.03h + 15 mm [8.8.5.3(g)] |
Minimum area compression reinforcement | - | - | - |
# Superseeded Codes
Concrete strength | Steel strength | Partial safety factor on concrete | Partial safety factor on steel | Uncracked concrete design strength for rectangular stress block | Cracked concrete design strength (equal to twice the upper limit on shear strength) | Concrete tensile design strength (used only to determine whether section cracked) | Compressive plateau concrete strain | Maximum axial compressive concrete strain | Maximum flexural compressive concrete strain | Proportion of depth to neutral axis over which constant stress acts | Maximum value of ratio of depth to neutral axis to effective depth in flexural situations | Elastic modulus of steel | Design strength of reinforcement in tension | Design strength of reinforcement in compression | Maximum linear steel stress | Yield strain in tension | Yield strain in compression | Design strain limit | Maximum concrete strength | Maximum steel strength | Minimum eccentricity | Minimum area compression reinforcement | Maximum permitted angle between applied and resulting principal stress | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BS8110 1997* & Concrete Society TR49 | [2.4.4.1] | [2.4.4.1] | 0.67 [Figure 3.3] | 2 [3.4.5.2 & TR 3.1.4] | 0.36 [4.3.8.4] | 0.002 [assumed] | [TR49 3.1.3] | [TR49 3.1.3] | 0.9 [Figure 3.3] | [upper limit] | 200 GPa [Figure 2.2] | [Figure 2.2] | [Figure 2.2] | [Figure 2.2] | [Figure 2.2] | [Figure 2.2] | (10 [3.4.4.1(e)] | [TR 1] | [Table 3.1] | min{h/20, 20 mm} [3.9.3.3] | - | - | ||
BS8110 1997 (Rev 2005) & Concrete Society TR49 | [2.4.4.1] | [2.4.4.1] | 0.67 [Figure 3.3] | 2 [3.4.5.2 & TR 3.1.4] | 0.36 [4.3.8.4] | 0.002 [assumed] | [TR49 3.1.3] | [TR49 3.1.3] | 0.9 [Figure 3.3] | [upper limit] | 200 GPa [Figure 2.2] | [Figure 2.2] | [Figure 2.2] | [Figure 2.2] | [Figure 2.2] | [Figure 2.2] | (10 [3.4.4.1(e)] | [TR 1] | [Table 3.1] | min{h/20, 20 mm} [3.9.3.3] | - | - | ||
BS5400 Part 4 & Concrete Society TR49 | [4.3.3.3] | [4.3.3.3] | 0.60 [5.3.2.1(b)] | min {11.875, 1.875 [5.3.3.3] | 0.36 [6.3.4.2] | 0.002 [assumed] | [5.3.2.1(b)] [TR49 3.1.3] | 0.0035 [5.3.2.1(b)] | 1 [5.3.2.1(b)] | where [5.3.2.1(d)] | 200 GPa [Figure 2] | [Figure 2] | ( [Figure 2] | 0.8 [Figure 2] | [Figure 2] | 0.002 [Figure 2] | ([0.01] assumed | - | - | 0.05h [5.6.2] | - | - | ||
Hong Kong Buildings 2004# | [Table 2.2] | [Table 2.2] | 0.67 [Figure 6.1] | min{17.5, 2 [6.1.2.5(a)] | 0.36 [12.3.8.4] | 0.002 [assumed] | [Figure 6.1] | [Figure 6.1] | 0.9 [Figure 6.1] | 45 < [6.1.2.4(b)] | 200 GPa [Figure 3.9] | [Figure 3.9] | [Figure 3.9] | [Figure 3.9] | [Figure 3.9] | [Figure 3.9] | (10 [6.1.2.4(a)] | [TR 1] | [Table 3.1] | min{h/20, 20 mm} [3.9.3.3] | - | - | ||
Hong Kong Buildings 2004 AMD1 2007 | [Table 2.2] | [Table 2.2] | 0.67 [Figure 6.1] | min{17.5, 2 [6.1.2.5(a)] | 0.36 [12.3.8.4] | 0.002 [assumed] | [Figure 6.1] | [Figure 6.1] | 45 < [Figure 6.1] | 45 < [6.1.2.4(b)] | 200 GPa [Figure 3.9] | [Figure 3.9] | [Figure 3.9] | [Figure 3.9] | [Figure 3.9] | [Figure 3.9] | (10 [6.1.2.4(a)] | [Table 2] | [Table 3.1] | min{h/20, 20 mm} [6.2.1.1(d)] | - | - | ||
Hong Kong Highways 2006 | [4.3.3.3] | [4.3.3.3] | 0.60 [5.3.2.1(b)] | min {11.875, 1.875 [5.3.3.3] | 0.36 [6.3.4.2] | 0.002 [assumed] | 0.0035 [5.3.2.1(b)] | 0.0035 [5.3.2.1(b)] | 1 [5.3.2.1(b)] | where [5.3.2.1(d)] | 200 GPa [Figure 2] | [Figure 2] | ( [Figure 2] | 0.8 [Figure 2] | [Figure 2] | 0.002 [Figure 2] | [0.01] assumed | - | - | 0.05h [5.6.2] | - | - |
*BS8110: 1985 is similar to BS8110: 1997 but with a value of 1.15 for
#Hong Kong 1987 code is similar to BS8110: 1985.