# Code Related Data

Codes with strength reduction factors

Codes with partial safety factors on materials

Current tabular codes

Codes with resistance factor on materials

Superseeded codes with partial safety factors on materials

# American Codes

These codes use strength reduction factors.

ACI318-08 ACI318-11 ACI318-14
Concrete strength
Steel strength
Strength reduction factor for axial compression*  f = 0.65
[9.3.2.2]
f = 0.65
[9.3.2.2]
f = 0.65
[21.2.2]
Strength reduction factor for axial tension*  f = 0.9
[9.3.2.1]
f = 0.9
[9.3.2.1]
f = 0.9
[21.2.2]
Uncracked concrete design strength for rectangular stress block  0.85 
[10.2.7.1]

0.85 
[10.2.7.1]

0.85 
[22.2.2.4.1]

Cracked concrete design strength (equal to twice the upper limit on shear strength) (5/3)   (   in MPa)
20     (   in psi)
[11.2.1.1 & 11.4.7.9]
1.66    (   in MPa)
20     (    in psi)
[11.2.1.1 & 11.4.7.9
11.9.3]
1.66   (   in MPa)
20       (    in psi)
[11.5.4.3]
Concrete tensile design strength (used only to determine whether section cracked) (1/3)   (   in MPa)
4       (   in psi)
[11.3.3.2]
0.33    (   in MPa)
4       (   in psi)
[11.3.3.2]
0.33   (   in MPa)
4      (   in psi)
[22.5.8.3.3]
Compressive plateau concrete strain 0.002
[assumed]
0.002
[assumed]
0.002
[assumed]
Maximum axial compressive concrete strain 0.003
[10.2.3]
0.003
[10.2.3]
0.003
[22.2.2.1]
Maximum flexural compressive concrete strain 0.003
[10.2.3]
0.003
[10.2.3]
0.003
[22.2.2.1]
Proportion of depth to neutral axis over which constant stress acts 0.85-0.05( ‑30)/7
(   in MPa)
0.85- 0.05( /1000‑4)
(   in psi)
but within limits 0.65 to 0.85
[10.2.7.3]
0.85-0.05( ‑28)/7
(   in MPa)
0.85- 0.05( /1000‑4)
(   in psi)
but within limits 0.65 to 0.85
[10.2.7.3]
0.85-0.05( ‑28)/7
(   in MPa)
0.85- 0.05( /1000‑4)
(   in psi)
but within limits 0.65 to 0.85
[22.2.2.4.3]
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations 
[10.3.5]

[10.3.5]

[7.3.3.1 & 8.3.3.1]
Elastic modulus of steel 200 GPa
[8.5.2]
200 GPa
[8.5.2]
200 GPa
[20.2.2.2]
Design strength of reinforcement in tension 
[10.2.4]

[10.2.4]

[20.2.2.1]
Design strength of reinforcement in compression 
[10.2.4]

[10.2.4]

[20.2.2.1]
Maximum linear steel stress 
[10.2.4]

[10.2.4]

[20.2.2.1]
Yield strain in tension /
[10.2.4]
/
[10.2.4]
/
[20.2.2.1]
Yield strain in compression /
[10.2.4]
/
[10.2.4]
/
[20.2.2.1]
Design strain limit [0.01]
assumed
[0.01]
assumed
[0.01]
assumed
Maximum concrete strength - - -
Maximum steel strength -
-
-
Minimum eccentricity 0.10 h
[R10.3.6 & R10.3.7]
0.10 h
[R10.3.6 & R10.3.7]
0.10 h
[R22.4.2.1]
Minimum area compression reinforcement -

-

-

maximum permitted angle between applied and resulting principal stress - - -

*Applied forces and moments are divided by the strength reduction factor to obtain design values for use within RCSlab. The appropriate vales are determined as follows:

kuc = εcu/(εcu + fyd/Es)

kut = εcu/(εcu + 0.005)

Mc = φckucβfcdc × (1 - kucβ/2) × (h/2 + zmin)2 - N × zmin

Mt = φtkutβfcdc × (1 - kutβ/2) × (h/2 + zmin)2 - N × zmin

If

If

Otherwise:

# Australian Codes

This code uses strength reduction factors.

AS3600
Concrete strength
Steel strength
Strength reduction factor for axial compression*  f = 0.6
[Table 2.2.2]
Strength reduction factor for axial tension*  f = 0.8     (N bars)
f = 0.64   (L bars)
[Table 2.2.2]
Uncracked concrete design strength for rectangular stress block 
Where  = 1.00-0.003 
but within limits 0.67 to 0.85
[10.6.2.5(b)]
Cracked concrete design strength (equal to twice the upper limit on shear strength) 0.4 
[11.6.2]

Concrete tensile design strength (used only to determine whether section cracked) 0.36
[3.1.1.3]
Compressive plateau concrete strain 0.002
[assumed]
Maximum axial compressive concrete strain 0.0025
[10.6.2.2(b)]
Maximum flexural compressive concrete strain 0.003
[8.1.2.(d)]
Proportion of depth to neutral axis over which constant stress acts 1.05-0.007 
but within limits 0.67 to 0.85
[10.6.2.5(b)]



Maximum value of ratio of depth to neutral axis to effective depth in flexural situations  0.36
[8.1.5]
Elastic modulus of steel 200 GPa
[3.2.2(a)]
Design strength of reinforcement in tension 
[3.2.1]
Design strength of reinforcement in compression 
[3.2.1]
Maximum linear steel stress 
[3.2.1]
Yield strain in tension /
[3.2.1]
Yield strain in compression /
[3.2.1]
Design strain limit Class N 0.05
Class L 0.015
[3.2.1]
Maximum concrete strength -
Maximum steel strength   £ 500 MPa
[3.2.1]
Minimum eccentricity 0.05 h
[10.1.2]
Minimum area compression reinforcement 0.01
(0.5% each face)
[10.7.1 (a)]
Maximum permitted angle between applied and resulting principal stress -

*Applied forces and moments are divided by the strength reduction factor to obtain design values for use within RCSlab. The appropriate vales are determined as follows:

kuc = (1.19 - φc) × 12/13

kut = (1.19 - φt) × 12/13

kub = εcu/(εcu + fyd/Es)

Mc = φckucβfcdc × (1 - kucβ/2) × (h/2 + zmin)2 - min(0, N) × zmin

Mt = φtkutβfcdc × (1 - kutβ/2) × (h/2 + zmin)2 - min(0, N) × zmin

Nb = [φckubβfcdc × (1 - kubβ/2) × (h/2 + zmin)2 - M] / zmin

If

If

Otherwise:

If

If

Otherwise:

# Eurocode

These codes use partial safety factors on materials.

EN1992-1-1 2004 +A1:2014 EN1992-2 2005
Concrete strength
Steel strength
Partial safety factor on concrete = 1.5
[2.4.2.4(1)]
= 1.5
[2.4.2.4(1)]
Partial safety factor on steel = 1.15
[2.4.2.4(1)]
= 1.15
[2.4.2.4(1)]
Uncracked concrete design strength for rectangular stress block  50 MPa                               /

> 50 MPa            (1 ‑ (-50)/200)
/

is an NDP*
[3.1.7(3)]
50 MPa                 /

> 50 MPa           (1 ‑ (-50)/200) 
/

is an NDP*
[3.1.7(3)]
Cracked concrete design strength (equal to twice the upper limit on shear strength) 0.6(1‑/250) /
[6.2.2(6)]  
0.312(1‑/250) /
[6.109 (103)iii]   (see also ϕΔ)  
Concrete tensile design strength (used only to determine whether section cracked) 50 MPa    0.21 2/3/

> 50 MPa 1.48 ln[1.8+ /10] /
is an NDP*  

[Table 3.1]  
50 MPa    0.21 2/3/

> 50 MPa 1.48 ln[1.8+ /10] /
is an NDP* 

[Table 3.1]  
Compressive plateau concrete strain 50 MPa 0.00175  

> 50 MPa 0.00175+ 0.00055 [(‑50)/40]  

[Table 3.1]  
50 MPa 0.00175  

> 50 MPa 0.00175+ 0.00055 [(‑50)/40]  

[Table 3.1]  
Maximum axial compressive concrete strain 50 MPa 0.00175  

> 50 MPa 0.00175+ 0.00055 [(‑50)/40]  
[Table 3.1]  
50 MPa 0.00175  
> 50 MPa 0.00175+ 0.00055 [(‑50)/40]  
[Table 3.1]  
Maximum flexural compressive concrete strain 50 MPa 0.0035  

> 50 MPa 0.0026+0.035 [(90‑)/ 100]4  

[Table 3.1]  
50 MPa 0.0035  

> 50 MPa 0.0026+0.035 [(90‑)/ 100]4  

[Table 3.1]  
Proportion of depth to neutral axis over which constant stress acts 50 MPa        0.8  

> 50 MPa                   0.8-(‑50)/400  

[3.1.7(3)]  
50 MPa        0.8  

> 50 MPa                   0.8-(‑50)/400  

[3.1.7(3)]  
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations  50 MPa              (1- )/

> 50 MPa              (1- )/

  and     are NDPs*    
[5.5(4)]
50 MPa               (1- )/

> 50 MPa             (1- )/

  and     are NDPs*    
[5.5(104)]
Elastic modulus of steel 200 GPa

[3.2.7(4)]

200 GPa

[3.2.7(4)]

Design strength of reinforcement in tension  /
[3.2.7(2)]
/
[3.2.7(2)]
Design strength of reinforcement in compression  /
[3.2.7(2)]
/
[3.2.7(2)]
Maximum linear steel stress  /
[3.2.7(2)]
/
[3.2.7(2)]
Yield strain in tension /( )
[3.2.7(2)]
/( )
[3.2.7(2)]
Yield strain in compression /( )
[3.2.7(2)]