Skip to main content

Analysis diagnostics : Error norm

Static analysis

In a static analysis the error norm is calculated only when ill-conditioning is suspected. The calculation is as follows:

Calculate the residual and solver for residual displacements

{fR}={f}[K]{u}{uR}=[K]1{fR}\begin{aligned} \left\{f_{R}\right\}&=\{f\}-[\mathrm{K}]\{u\} \\ \left\{u_{R}\right\}&=[K]^{-1}\left\{f_{R}\right\} \end{aligned}

and then the error is

e=uRue=\frac{\left\|u_{R}\right\|}{\|u\|}

where

u=ui2\|u\|=\sqrt{\sum u_{i}^{2}}

These error norms are reported in the Analysis details output.

In a modal analysis the error norm is always calculated. The calculation for a dynamic analysis is as follows:

e=[K]{u}λ[M]{u}[K]{u}e=\frac{\|[K]\{u\}-\lambda[M]\{u\}\|}{\| [K]\{u\} \|}

and for a buckling analysis:

e=K]{u}+λ[Kg]{u}[K]{u}e=\frac{\| K]\{u\}+\lambda\left[K_{g}\right]\{u\} \|}{\|[K]\{u\}\|}

These are reported in the Analysis details output.