Force
Point load W at position a
From Roark10, the end rotations for a point load are
θ0θ1=−6EIWla(2l−a)(l−a)=6EIWla(l2−a2) Letting the distance from end 1 be b these equations can be rewritten
θ0θ1=−6EIWlab(l+b)=6EIWlab(l+a) Varying load from [a:b] with intensity wa and
wb.
Using the equations above from Roark the end rotations for a point load
at x are
θ0=−6EIWlx(2l−x)(l−x)θ1=6EIWlx(l2−x2) Using these and integrating over the element gives
θ0=−6EI1∫abw(x)lx(2l−x)(l−x)dxθ1=6EI1∫abw(x)lx(l2−x2)dx(1)(2) The load intensity is a linear function in the range
[a:b]
w(x)=wa+(wb−wa)(b−a)(x−a)=(b−a)wa(b−a)+(b−a)(wb−wa)x−(b−a)(wb−wa)a=(b−a)wab−waa−wba+waa+(b−a)(wb−wa)x=(b−a)wab−wba+(b−a)(wb−wa)x Or
w(x)=wp+wqx(3) where
wp=(b−a)wab−wbawq=(b−a)(wb−wa) Substituting equation 3 in 1 for end 0
θ0=−6EI1∫ab(wp+wqx)lx(2l−x)(l−x)dx=−6EIwp∫ablx(2l−x)(l−x)dx−6EIwq∫ablx2(2l−x)(l−x)dx=−6EIlwp∫abx(2l2−3lx+x2)dx−6EIwq∫abx2(2l2−3lx+x2)dx=−6EIlwp∫ab(2l2x−3lx2+x3)dx−6EIlwq∫ab(2l2x2−3lx3+x4)dx so
θ0=−6EIlwp=−6EIlwp[l2x2−lx3+4x4]ab−6EIlwq[32l2x3−43lx4+5x5]ab[l2(b2−a2)−l(b3−a3)+4(b4−a4)]−6EIlwq[32l2(b3−a3)−43l(b4−a4)+5(b5−a5)] Substituting equation 3 in 2 for end 1
θ1=−6EI1∫ab(wp+wqx)lx(l2−x2)dx=−6EIwp∫abx(l2−x2)dx−6EIlwq∫abx2(l2−x2)dx=−6EIlwp∫ab(l2x−x3)dx−6EIlwq∫ab(l2x2−x4)dx so
θ1=−6EIlwp=−6EIlwp[2l2x2−4x4]ab−6EIlwq[3l2x3−5x5]ab[2l2(b2−a2)−4(b4−a4)]−6EIlwq[3l2(b3−a3)−5(b5−a5)]
10 Roark Formulas for Stress and Strain, Table 3 (1.e)