Skip to main content

Beam Elements

The beam element stiffness is

K=E[Al00000Al0000012Izzl30006Izzl2012Izzl30006Izzl212Iyyl306Iyyl200012Iyyl306Iyyl20GJEl00000GJEl004Iyyl0006Iyyl202Iyyl04Izzl06Izzl20002zzlAl0000012Izzl30006Izzl212Iyyl306Iyyl20GJEl004Iyyl04Izzl]\mathbf{K} = E\begin{bmatrix} \frac{A}{l} & 0 & 0 & 0 & 0 & 0 & - \frac{A}{l} & 0 & 0 & 0 & 0 & 0 \\ & \frac{12I_{zz}}{l^{3}} & 0 & 0 & 0 & \frac{6I_{zz}}{l^{2}} & 0 & - \frac{12I_{zz}}{l^{3}} & 0 & 0 & 0 & \frac{6I_{zz}}{l^{2}} \\ & & \frac{12I_{yy}}{l^{3}} & 0 & - \frac{6I_{yy}}{l^{2}} & 0 & 0 & 0 & - \frac{12I_{yy}}{l^{3}} & 0 & - \frac{6I_{yy}}{l^{2}} & 0 \\ & & & \frac{GJ}{El} & 0 & 0 & 0 & 0 & 0 & - \frac{GJ}{El} & 0 & 0 \\ & & & & \frac{4I_{yy}}{l} & 0 & 0 & 0 & \frac{6I_{yy}}{l^{2}} & 0 & \frac{2I_{yy}}{l} & 0 \\ & & & & & \frac{4I_{zz}}{l} & 0 & - \frac{6I_{zz}}{l^{2}} & 0 & 0 & 0 & \frac{2_{zz}}{l} \\ & & & & & & \frac{A}{l} & 0 & 0 & 0 & 0 & 0 \\ & & & & & & & \frac{12I_{zz}}{l^{3}} & 0 & 0 & 0 & - \frac{6I_{zz}}{l^{2}} \\ & & & & & & & & \frac{12I_{yy}}{l^{3}} & 0 & \frac{6I_{yy}}{l^{2}} & 0 \\ & & & & & & & & & \frac{GJ}{El} & 0 & 0 \\ & & & & & & & & & & \frac{4I_{yy}}{l} & 0 \\ & & & & & & & & & & & \frac{4I_{zz}}{l} \\ \end{bmatrix}

These are modified for a shear beam as follows

α=12EIiil2GAs,As=Akjj\alpha = 12\frac{EI_{ii}}{l^{2}GA_{s}},\quad As = Ak_{jj}
2EIl(2α1+α)EIl6EIl2(61+α)EIl24EIl(4+α1+α)EIl12EIl3(121+α)EIl3\begin{aligned}\frac{2EI}{l} &\rightarrow \left( \frac{2 - \alpha}{1 + \alpha} \right)\frac{EI}{l}\\ \frac{6EI}{l^{2}} &\rightarrow \left( \frac{6}{1 + \alpha} \right)\frac{EI}{l^{2}}\\ \frac{4EI}{l} &\rightarrow \left( \frac{4 + \alpha}{1 + \alpha} \right)\frac{EI}{l}\\ \frac{12EI}{l^{3}} &\rightarrow \left( \frac{12}{1 + \alpha} \right)\frac{EI}{l^{3}}\end{aligned}

The mass matrix is

M=ρAl420[14000000700000015600022l05400013l156022l00054013l0140JA0000070JA004l200013l03l204l2013l0003l21400000015600022l156022l0140JA004l204l2]\mathbf{M} = \frac{\rho Al}{420}\begin{bmatrix} 140 & 0 & 0 & 0 & 0 & 0 & 70 & 0 & 0 & 0 & 0 & 0 \\ & 156 & 0 & 0 & 0 & 22l & 0 & 54 & 0 & 0 & 0 & - 13l \\ & & 156 & 0 & - 22l & 0 & 0 & 0 & 54 & 0 & 13l & 0 \\ & & & 140\frac{J}{A} & 0 & 0 & 0 & 0 & 0 & 70\frac{J}{A} & 0 & 0 \\ & & & & 4l^{2} & 0 & 0 & 0 & - 13l & 0 & - 3l^{2} & 0 \\ & & & & & 4l^{2} & 0 & 13l & 0 & 0 & 0 & - 3l^{2} \\ & & & & & & 140 & 0 & 0 & 0 & 0 & 0 \\ & & & & & & & 156 & 0 & 0 & 0 & - 22l \\ & & & & & & & & 156 & 0 & 22l & 0 \\ & & & & & & & & & 140\frac{J}{A} & 0 & 0 \\ & & & & & & & & & & 4l^{2} & 0 \\ & & & & & & & & & & & 4l^{2} \\ \end{bmatrix}

And the geometric stiffness is

Kg=[0000000000006Fx5l0My1l0Fx1006Fx5l0My2l0Fx106Fx5lMz1lFx100006Fx5lMz2lFx100FxIxxAlVyl6Vzl60My1lMz1lFxIxxAlVyl6Vzl62Fxl15000Fx10Vyl6Fxl3002Fxl150Fx100Vzl60Fxl300000006Fx5l0My2l0Fx106Fx5lMz2lFx100FxIxxAlVyl6Vzl62Fxl1502Fxl15]\mathbf{K}_{g} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ & \frac{6F_{x}}{5l} & 0 & \frac{M_{y1}}{l} & 0 & \frac{F_{x}}{10} & 0 & - \frac{6F_{x}}{5l} & 0 & \frac{M_{y2}}{l} & 0 & \frac{F_{x}}{10} \\ & & \frac{6F_{x}}{5l} & \frac{M_{z1}}{l} & - \frac{F_{x}}{10} & 0 & 0 & 0 & - \frac{6F_{x}}{5l} & \frac{M_{z2}}{l} & - \frac{F_{x}}{10} & 0 \\ & & & \frac{F_{x}I_{xx}}{Al} & - \frac{V_{y}l}{6} & - \frac{V_{z}l}{6} & 0 & - \frac{M_{y1}}{l} & - \frac{M_{z1}}{l} & - \frac{F_{x}I_{xx}}{Al} & \frac{V_{y}l}{6} & \frac{V_{z}l}{6} \\ & & & & \frac{2F_{x}l}{15} & 0 & 0 & 0 & \frac{F_{x}}{10} & \frac{V_{y}l}{6} & - \frac{F_{x}l}{30} & 0 \\ & & & & & \frac{2F_{x}l}{15} & 0 & - \frac{F_{x}}{10} & 0 & \frac{V_{z}l}{6} & 0 & - \frac{F_{x}l}{30} \\ & & & & & & 0 & 0 & 0 & 0 & 0 & 0 \\ & & & & & & & \frac{6F_{x}}{5l} & 0 & - \frac{M_{y2}}{l} & 0 & - \frac{F_{x}}{10} \\ & & & & & & & & \frac{6F_{x}}{5l} & - \frac{M_{z2}}{l} & - \frac{F_{x}}{10} & 0 \\ & & & & & & & & & \frac{F_{x}I_{xx}}{Al} & - \frac{V_{y}l}{6} & - \frac{V_{z}l}{6} \\ & & & & & & & & & & \frac{2F_{x}l}{15} & 0 \\ & & & & & & & & & & & \frac{2F_{x}l}{15} \\ \end{bmatrix}

where

Ixx=Izz+IyyI_{xx} = I_{zz} + I_{yy}

Non-symmetric Beam Sections

In a beam with a symmetric section the bending properties depend only on the IzzI_{zz} and IyyI_{yy} terms. If such a beam is loaded in the y or z axis directions the deflection is in the direction of the loading.

When the section is not symmetric and is loaded in the y or z direction there is a component of deflection orthogonal to the loading. This is because the bending properties depend on IzzI_{zz}, IyyI_{yy} and IyzI_{yz}.

By rotating the section to principal axes this cross term can be omitted and if the beam is loaded in the uu or vv (principal bending) axis the deflection is in the direction of the loading. In this case the stiffness matrix for the element is calculated using the principal second moments of area and is then rotated into the element local axis system.

For a beam with a non-symmetric section the user must consider if the beam is restrained (so that deflections are constrained to be in the direction of the loading) or if it will act in isolation (resulting in deflections orthogonal to the loading).

If the beam is to act as constrained the user should use the local option for the bending axes. In this case the IzzI_{zz} and IyyI_{yy} values are used and the IyzI_{yz} value is discarded.

If the beam is to act in isolation the user should use the principal option for the bending axes. In this case the stiffness matrix for the element is calculated using the principal second moments of area and is then rotated into the element local axis system.

The effect of shear is also a tensor quantity involving the inverse of the shear are factor kk. So for symmetric section the kyzk_{yz} is infinite (no effect) and for non-symmetric sections there is a kyzk_{yz} term that should be considered. Note: the principal axes for shear are in general not aligned with the principal axes for bending. To simplify the calculation of the element stiffness the kk terms are rotated into the principal bending axes of the section and the effect of the kyzk_{yz} term is ignored.

Where the user has specified section modifiers these are specified in directions 11 and 22. If the bending axes are set to local then these correspond to yy and zz respectively. If the bending axes are set to principal, then 11 and 22 correspond to uu and vv respectively.

All catalogue and standard sections except angles are symmetric. Explicit sections are assumed to be defined such that the principal and local axes coincide so there is no IyzI_{yz}. Geometric (perimeter and line segment) sections are assumed to be non-symmetric.