Skip to main content

Axis transformation

If the material and local axes are not aligned the constitutive relationship needs to be transformed into the local axes of the element. If li,mi,nil_i, m_i, n_i are the direction cosines relating the material axes, xix_i' to the local axes xix_i such that

xi=lix1+mix2+nix3fori=1,2,3x_i' = l_i x_1+ m_i x_2 + n_i x_3 \qquad for \: i=1,2,3

In the local axes the stress and strain relationship becomes

σ=Cϵ=TTCmTϵ\sigma = C \epsilon = T^T C_m T \epsilon

where TT is

T=[l12m12n12l1m1m1n1n1l1l22m22n22l2m2m2n2n2l2l32m32n32l3m3m3n3n3l32l1l22m1m22n1n2(l1m2+l2m1)(m1n2+m2n1)(n1l2+n2l1)2l2l32m2m32n2n3(l2m3+l3m2)(m2n3+m3n2)(n2l3+n3l2)2l3l12m3m12n3n1(l3m1+l1m3)(m3n1+m1n3)(n3l1+n1l3)]T= \begin{bmatrix} l_1^2 & m_1^2 & n_1^2 & l_1 m_1 & m_1 n_1 & n_1 l_1 \\ l_2^2 & m_2^2 & n_2^2 & l_2 m_2 & m_2 n_2 & n_2 l_2 \\ l_3^2 & m_3^2 & n_3^2 & l_3 m_3 & m_3 n_3 & n_3 l_3 \\ 2 l_1 l_2 & 2m_1 m_2 & 2 n_1 n_2 & (l_1 m_2 + l_2 m_1) & (m_1 n_2 + m_2 n_1) & (n_1 l_2 + n_2 l_1) \\ 2 l_2 l_3 & 2m_2 m_3 & 2 n_2 n_3 & (l_2 m_3 + l_3 m_2) & (m_2 n_3 + m_3 n_2) & (n_2 l_3 + n_3 l_2) \\ 2 l_3 l_1 & 2m_3 m_1 & 2 n_3 n_1 & (l_3 m_1 + l_1 m_3) & (m_3 n_1 + m_1 n_3) & (n_3 l_1 + n_1 l_3) \\ \end{bmatrix}

As an example if the material xx and yy axes are rotated 90° from the local axes the transformation matrix becomes

T=[010000100000001000000100000001000010]T= \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ \end{bmatrix}

Multiplying the constitutive relationship results in an updated constitutive matrix

C=[c22c21c23000c12c11c13000c32c31c33000000c44000000c66000000c55]C= \begin{bmatrix} c_{22} & c_{21} & c_{23} & 0 & 0 & 0 \\ c_{12} & c_{11} & c_{13} & 0 & 0 & 0 \\ c_{32} & c_{31} & c_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & c_{66} & 0 \\ 0 & 0 & 0 & 0 & 0 & c_{55} \\ \end{bmatrix}