Moment
Point moment Mat position a
From Roark11, the end rotations for a point load at a are
θ0θ1=−6EIlM(2l2−6al+3a2)=6EIM(l2−3a2) Letting the distance from end 1 be b these equations can be rewritten
θ0θ1=6EIlM(l2−3b2)=6EIM(l2−3a2) Varying load from [a:b] with intensity ma and
mb.
Using the equations above from Roark the end rotations for a point
moment at x are
θ0θ1=−6EIlM(2l2−6xl+3x2)=6EIM(l2−3x2) Using these and integrating over the element gives
θ0θ1=−6EIl1∫abm(x)(2l2−6xl+3x2)dx=6EI1∫abm(x)(l2−3x2)dx(4)(5) As with the forces the moment intensity can be written as
m(x)=mp+mqx(6) where
mp=(b−a)mab−mbamq=(b−a)(mb−ma) Substituting equation 6 in 4 for end 0
θ0=−6EIl1∫ab(mp+mqx)(2l2−6xl+3x2)dx=−6EIlmp∫ab(2l2−6xl+3x2)dx−6EIlmq∫ab(2l2x−6x2l+3x3)dx so
θ0=−6EIlmp=−6EIlmp[2l2x−3x2l+x3]ab−6EIlmq[l2x2−2x3l+43x4]ab[2l2(b−a)−3(b2−a2)l+(b3−a3)]−6EIlmq[l2(b2−a2)−2(b3−a3)l+43(b4−a4)] Substituting equation 6 in 5 for end 1
θ1=6EI1∫ab(mp+mqx)(l2−3x2)dx=6EImp∫ab(l2−3x2)dx+6EImq∫ab(l2x−3x3)dx so
θ1==6EIlmp[l2x−x3]ab+6EIlmq[2l2x2−43x4]ab6EIlmp[l2(b−a)−(b3−a3)]+6EIlmq[2l2(b2−a2)−43(b4−a4)]
11 Roark Formulas for Stress and Strain, Table 3 (3.e)