# Code Related Data

Codes with strength reduction factors

Codes with partial safety factors on materials

Current tabular codes

Codes with resistance factor on materials

Superseeded codes with partial safety factors on materials

## American Codes​

These codes use strength reduction factors.

ACI318-08ACI318-11ACI318-14
Concrete strength ${f'}_c$ ${f'}_c$ ${f'}_c$
Steel strength $f_{y}$ $f_{y}$ $f_{y}$
Strength reduction factor for axial compression*  ${f}_c$f = 0.65
[9.3.2.2]
f = 0.65
[9.3.2.2]
f = 0.65
[21.2.2]
Strength reduction factor for axial tension*  ${f}_s$f = 0.9
[9.3.2.1]
f = 0.9
[9.3.2.1]
f = 0.9
[21.2.2]
Uncracked concrete design strength for rectangular stress block  ${f}_{cdu}$0.85  ${f'}_c$
[10.2.7.1]

0.85  ${f'}_c$
[10.2.7.1]

0.85  ${f'}_c$
[22.2.2.4.1]

Cracked concrete design strength (equal to twice the upper limit on shear strength) ${f}_{cdc}$(5/3) $\sqrt{{f'}_c}$  ( ${f'}_c$  in MPa)
20 $\sqrt{{f'}_c}$    ( ${f'}_c$  in psi)
[11.2.1.1 & 11.4.7.9]
1.66 $\sqrt{{f'}_c}$   ( ${f'}_c$  in MPa)
20 $\sqrt{{f'}_c}$    (  ${f'}_c$  in psi)
[11.2.1.1 & 11.4.7.9
11.9.3]
1.66 $\sqrt{{f'}_c}$  ( ${f'}_c$  in MPa)
20 $\sqrt{{f'}_c}$      (  ${f'}_c$  in psi)
[11.5.4.3]
Concrete tensile design strength (used only to determine whether section cracked) ${f}_{cdt}$(1/3) $\sqrt{{f'}_c}$  ( ${f'}_c$  in MPa)
4 $\sqrt{{f'}_c}$      ( ${f'}_c$  in psi)
[11.3.3.2]
0.33 $\sqrt{{f'}_c}$   ( ${f'}_c$  in MPa)
4 $\sqrt{{f'}_c}$      ( ${f'}_c$  in psi)
[11.3.3.2]
0.33 $\sqrt{{f'}_c}$  ( ${f'}_c$  in MPa)
4 $\sqrt{{f'}_c}$     ( ${f'}_c$  in psi)
[22.5.8.3.3]
Compressive plateau concrete strain ${\epsilon}_{ctrans}$0.002
[assumed]
0.002
[assumed]
0.002
[assumed]
Maximum axial compressive concrete strain ${\epsilon}_{cax}$0.003
[10.2.3]
0.003
[10.2.3]
0.003
[22.2.2.1]
Maximum flexural compressive concrete strain ${\epsilon}_{cu}$0.003
[10.2.3]
0.003
[10.2.3]
0.003
[22.2.2.1]
Proportion of depth to neutral axis over which constant stress acts $\beta$0.85-0.05( ${f'}_c$ -30)/7
( ${f'}_c$  in MPa)
0.85- 0.05( ${f'}_c$ /1000-4)
( ${f'}_c$  in psi)
but within limits 0.65 to 0.85
[10.2.7.3]
$\beta_1$
0.85-0.05( ${f'}_c$ -28)/7
( ${f'}_c$  in MPa)
0.85- 0.05( ${f'}_c$ /1000-4)
( ${f'}_c$  in psi)
but within limits 0.65 to 0.85
[10.2.7.3]
$\beta_1$
0.85-0.05( ${f'}_c$ -28)/7
( ${f'}_c$  in MPa)
0.85- 0.05( ${f'}_c$ /1000-4)
( ${f'}_c$  in psi)
but within limits 0.65 to 0.85
[22.2.2.4.3]
$\beta_1$
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations  ${(\frac{x}{d})}_{max}$$\frac{1}{1 + \frac{0.004}{\epsilon_{cu}}}$
[10.3.5]
${\frac{c}{d}}_{max}$
$\frac{1}{1 + \frac{0.004}{\epsilon_{cu}}}$
[10.3.5]
${\frac{c}{d}}_{max}$
$\frac{1}{1 + \frac{0.004}{\epsilon_{cu}}}$
[7.3.3.1 & 8.3.3.1]
${\frac{c}{d}}_{max}$
Elastic modulus of steel $E_s$200 GPa
[8.5.2]
200 GPa
[8.5.2]
200 GPa
[20.2.2.2]
Design strength of reinforcement in tension  $f_{yd}$ $f_{y}$
[10.2.4]
$f_{y}$
[10.2.4]
$f_{y}$
[20.2.2.1]
Design strength of reinforcement in compression  $f_{ydc}$ $f_{y}$
[10.2.4]
$f_{y}$
[10.2.4]
$f_{y}$
[20.2.2.1]
Maximum linear steel stress  $f_{lim}$ $f_{y}$
[10.2.4]
$f_{y}$
[10.2.4]
$f_{y}$
[20.2.2.1]
Yield strain in tension ${\epsilon}_{plas}$ $f_{y}$ / $E_s$
[10.2.4]
$f_{y}$ / $E_s$
[10.2.4]
$f_{y}$ / $E_s$
[20.2.2.1]
Yield strain in compression ${\epsilon}_{plasc}$ $f_{y}$ / $E_s$
[10.2.4]
$f_{y}$ / $E_s$
[10.2.4]
$f_{y}$ / $E_s$
[20.2.2.1]
Design strain limit ${\epsilon}_{sll}$[0.01]
assumed
[0.01]
assumed
[0.01]
assumed
Maximum concrete strength---
Maximum steel strength-
-
-
Minimum eccentricity0.10 h
[R10.3.6 & R10.3.7]
0.10 h
[R10.3.6 & R10.3.7]
0.10 h
[R22.4.2.1]
Minimum area compression reinforcement-

-

-

maximum permitted angle between applied and resulting principal stress ${\varphi}_{\Delta}$---

*Applied forces and moments are divided by the strength reduction factor to obtain design values for use within RCSlab. The appropriate vales are determined as follows:

$M = \frac{abs(M_{xx} + M_{yy})}{2} + \sqrt{\frac{{M_{xx} - M_{yy}}^2}{4} + {M_{xy}}^2}$
$N = \frac{N_{xx} + N_{yy}}{2} + \sqrt{\frac{{N_{xx} - N_{yy}}^2}{4} + {N_{xy}}^2}$
$z_{min} = \min{(z_{t1}, z_{t2}, -z_{b1}, -z_{b2})}$

kuc = εcu/(εcu + fyd/Es)

kut = εcu/(εcu + 0.005)

Mc = φckucβfcdc × (1 - kucβ/2) × (h/2 + zmin)2 - N × zmin

Mt = φtkutβfcdc × (1 - kutβ/2) × (h/2 + zmin)2 - N × zmin

If $M \le M_t : \phi = \phi_{t}$

If $M \ge M_c : \phi = \phi_{c}$

Otherwise: $\phi = \frac{\left\lbrack \left( M_{c} - M \right)\phi_{t} + \left( M - M_{t} \right)\phi_{c} \right\rbrack}{\left( M_{c} - M_{t} \right)}$

## Australian Codes​

This code uses strength reduction factors.

AS3600
Concrete strength ${f'}_c$
Steel strength $f_{sy}$
Strength reduction factor for axial compression*  ${f}_c$f = 0.6
[Table 2.2.2]
Strength reduction factor for axial tension*  ${f}_s$f = 0.8     (N bars)
f = 0.64   (L bars)
[Table 2.2.2]
Uncracked concrete design strength for rectangular stress block  ${f}_{cdu}$ $\alpha_2$ ${f'}_c$
Where  $\alpha_2$= 1.00-0.003  ${f'}_c$
but within limits 0.67 to 0.85
[10.6.2.5(b)]
Cracked concrete design strength (equal to twice the upper limit on shear strength) ${f}_{cdc}$0.4  ${f'}_c$
[11.6.2]

Concrete tensile design strength (used only to determine whether section cracked) ${f}_{cdt}$0.36 $\sqrt{{f'}_c}$
[3.1.1.3]
Compressive plateau concrete strain ${\epsilon}_{ctrans}$0.002
[assumed]
Maximum axial compressive concrete strain ${\epsilon}_{cax}$0.0025
[10.6.2.2(b)]
Maximum flexural compressive concrete strain ${\epsilon}_{cu}$0.003
[8.1.2.(d)]
Proportion of depth to neutral axis over which constant stress acts $\beta$1.05-0.007  ${f'}_c$
but within limits 0.67 to 0.85
[10.6.2.5(b)]
$\gamma$

Maximum value of ratio of depth to neutral axis to effective depth in flexural situations  ${(\frac{x}{d})}_{max}$0.36
[8.1.5]
$k_{u,max}$
Elastic modulus of steel $E_s$200 GPa
[3.2.2(a)]
Design strength of reinforcement in tension  $f_{yd}$ $f_{sy}$
[3.2.1]
Design strength of reinforcement in compression  $f_{ydc}$ $f_{sy}$
[3.2.1]
Maximum linear steel stress  $f_{lim}$ $f_{sy}$
[3.2.1]
Yield strain in tension ${\epsilon}_{plas}$ $f_{sy}$ / $E_s$
[3.2.1]
Yield strain in compression ${\epsilon}_{plasc}$ $f_{sy}$ / $E_s$
[3.2.1]
Design strain limit ${\epsilon}_{sll}$Class N 0.05
Class L 0.015
[3.2.1]
Maximum concrete strength-
Maximum steel strength $f_{sy}$  £ 500 MPa
[3.2.1]
Minimum eccentricity0.05 h
[10.1.2]
Minimum area compression reinforcement0.01
(0.5% each face)
[10.7.1 (a)]
Maximum permitted angle between applied and resulting principal stress ${\varphi}_{\Delta}$-

*Applied forces and moments are divided by the strength reduction factor to obtain design values for use within RCSlab. The appropriate vales are determined as follows:

$M = \frac{abs(M_{xx} + M_{yy})}{2} + \sqrt{\frac{{M_{xx} - M_{yy}}^2}{4} + {M_{xy}}^2}$
$N = \frac{N_{xx} + N_{yy}}{2} + \sqrt{\frac{{N_{xx} - N_{yy}}^2}{4} + {N_{xy}}^2}$
$z_{min} = \min{(z_{t1}, z_{t2}, -z_{b1}, -z_{b2})}$

kuc = (1.19 - φc) × 12/13

kut = (1.19 - φt) × 12/13

kub = εcu/(εcu + fyd/Es)

Mc = φckucβfcdc × (1 - kucβ/2) × (h/2 + zmin)2 - min(0, N) × zmin

Mt = φtkutβfcdc × (1 - kutβ/2) × (h/2 + zmin)2 - min(0, N) × zmin

Nb = [φckubβfcdc × (1 - kubβ/2) × (h/2 + zmin)2 - M] / zmin

If $M \le M_t : \phi_{b} = \phi_{t}$

If $M \ge M_c : \phi_{b} = \phi_{c}$

Otherwise: $\phi_{b} = \frac{\left\lbrack \left( M_{c} - M \right)\phi_{t} + \left( M - M_{t} \right)\phi_{c} \right\rbrack}{\left( M_{c} - M_{t} \right)}$

If $N \le 0 : \phi = \phi_{t}$

If $M \ge N_b : \phi = \phi_{c}$

Otherwise: $\phi = \phi_{b}\frac{\left( 1 + \sqrt{\left\lbrack 1 - 4\left( \phi_{b} - \phi_{c} \right) \times \frac{\left( \frac{N}{N_{b}} \right)}{{\phi_{b}}^{2}} \right\rbrack} \right)}{2}$

## Eurocode​

These codes use partial safety factors on materials.

EN1992-1-1 2004 +A1:2014EN1992-2 2005
Concrete strength$f_{ck}$$f_{ck}$
Steel strength$f_{yk}$$f_{yk}$
Partial safety factor on concrete $\gamma_{C}$ = 1.5
[2.4.2.4(1)]
$\gamma_{C}$ = 1.5
[2.4.2.4(1)]
Partial safety factor on steel$\gamma_{S}$ = 1.15
[2.4.2.4(1)]
$\gamma_{S}$ = 1.15
[2.4.2.4(1)]
Uncracked concrete design strength for rectangular stress block  ${f}_{cdu}$$f_{ck}$ $\le$ 50 MPa                               $\alpha_{cc}$$f_{ck}$/$\gamma_{C}$

$f_{ck}$ > 50 MPa            (1 - ($f_{ck}$-50)/200) $\times$
$\alpha_{cc}$$f_{ck}$/$\gamma_{C}$

$\alpha_{cc}$ is an NDP*
[3.1.7(3)]
${\eta}f_{cd}$
$f_{ck}$ $\le$ 50 MPa                 $\alpha_{cc}$$f_{ck}$/$\gamma_{C}$

$f_{ck}$ > 50 MPa           (1 - ($f_{ck}$-50)/200)  $\times$
$\alpha_{cc}$$f_{ck}$/$\gamma_{C}$

$\alpha_{cc}$ is an NDP*
[3.1.7(3)]
${\eta}f_{cd}$
Cracked concrete design strength (equal to twice the upper limit on shear strength) ${f}_{cdc}$0.6$\times$(1-$f_{ck}$/250)$\times$ $f_{ck}$/$\gamma_{C}$
[6.2.2(6)]
${\nu}f_{cd}$
0.312$\times$(1-$f_{ck}$/250)$\times$ $f_{ck}$/$\gamma_{C}$
${\nu}f_{cd}$
Concrete tensile design strength (used only to determine whether section cracked) ${f}_{cdt}$$f_{ck}$ $\le$ 50 MPa    $\alpha_{ct}$ $\times$ 0.21 $f_{ck}$ 2/3/$\gamma_{C}$

$f_{ck}$ > 50 MPa $\alpha_{ct}$ $\times$ 1.48 $\times$ ln[1.8+ $f_{ck}$/10] /$\gamma_{C}$
$\alpha_{ct}$ is an NDP*

[Table 3.1]
$f_{cdt}$
$f_{ck}$ $\le$ 50 MPa    $\alpha_{ct}$ $\times$ 0.21 $f_{ck}$ 2/3/ $\gamma_{C}$

$f_{ck}$ > 50 MPa $\alpha_{ct}$ $\times$ 1.48 $\times$ ln[1.8+ $f_{ck}$/10] /$\gamma_{C}$
$\alpha_{ct}$ is an NDP*

[Table 3.1]
$f_{cdt}$
Compressive plateau concrete strain ${\epsilon}_{ctrans}$$f_{ck}$ $\le$ 50 MPa 0.00175

$f_{ck}$ > 50 MPa 0.00175+ 0.00055 $\times$ [($f_{ck}$-50)/40]

[Table 3.1]
$\epsilon_{c3}$
$f_{ck}$ $\le$ 50 MPa 0.00175

$f_{ck}$ > 50 MPa 0.00175+ 0.00055 $\times$ [($f_{ck}$-50)/40]

[Table 3.1]
$\epsilon_{c3}$
Maximum axial compressive concrete strain ${\epsilon}_{cax}$$f_{ck}$ $\le$ 50 MPa 0.00175

$f_{ck}$ > 50 MPa 0.00175+ 0.00055 $\times$ [($f_{ck}$-50)/40]
[Table 3.1]
$\epsilon_{c3}$
$f_{ck}$ $\le$ 50 MPa 0.00175
$f_{ck}$ > 50 MPa 0.00175+ 0.00055 $\times$ [($f_{ck}$-50)/40]
[Table 3.1]
$\epsilon_{c3}$
Maximum flexural compressive concrete strain ${\epsilon}_{cu}$$f_{ck}$ $\le$ 50 MPa 0.0035

$f_{ck}$ > 50 MPa 0.0026+0.035 $\times$ [(90-$f_{ck}$)/ 100]4

[Table 3.1]
$\epsilon_{cu3}$
$f_{ck}$ $\le$ 50 MPa 0.0035

$f_{ck}$ > 50 MPa 0.0026+0.035 $\times$ [(90-$f_{ck}$)/ 100]4

[Table 3.1]
$\epsilon_{cu3}$
Proportion of depth to neutral axis over which constant stress acts $\beta$$f_{ck}$ $\le$ 50 MPa        0.8

$f_{ck}$ > 50 MPa                   0.8-($f_{ck}$-50)/400

[3.1.7(3)]
$\lambda$
$f_{ck}$ $\le$ 50 MPa        0.8

$f_{ck}$ > 50 MPa                   0.8-($f_{ck}$-50)/400

[3.1.7(3)]   $\lambda$
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations  ${\frac{x}{d}}_{max}$$f_{ck}$ $\le$ 50 MPa              (1- $k_1$ )/ $k_2$

$f_{ck}$ > 50 MPa              (1- $k_3$ )/ $k_4$

$k_1$$k_2$$k_3$  and   $k_4$  are NDPs*
[5.5(4)]
$f_{ck}$ $\le$ 50 MPa               (1- $k_1$ )/ $k_2$

$f_{ck}$ > 50 MPa             (1- $k_3$ )/ $k_4$

$k_1$$k_2$$k_3$  and   $k_4$  are NDPs*
[5.5(104)]
Elastic modulus of steel $E_s$200 GPa

[3.2.7(4)]

$E_s$
200 GPa

[3.2.7(4)]

$E_s$
Design strength of reinforcement in tension  $f_{yd}$ $f_{yk}$ / $\gamma_s$
[3.2.7(2)]
$f_{yd}$
$f_{yk}$ / $\gamma_s$
[3.2.7(2)]
$f_{yd}$
Design strength of reinforcement in compression  $f_{ydc}$ $f_{yk}$ / $\gamma_s$
[3.2.7(2)]
$f_{yd}$
$f_{yk}$ / $\gamma_s$
[3.2.7(2)]
$f_{yd}$
Maximum linear steel stress  $f_{lim}$ $f_{yk}$ / $\gamma_s$
[3.2.7(2)]
$f_{yk}$ / $\gamma_s$
[3.2.7(2)]
Yield strain in tension ${\epsilon}_{plas}$ $f_{yk}$ /( $\gamma_s$  $E_s$ )
[3.2.7(2)]
$f_{yk}$ /( $\gamma_s$  $E_s$ )
[3.2.7(2)]
Yield strain in compression ${\epsilon}_{plasc}$ $f_{yk}$ /( $\gamma_s$  $E_s$ )
[3.2.7(2)]
$f_{yk}$ /( $\gamma_s$  $E_s$ )
[3.2.7(2)]
Design strain limit ${\epsilon}_{sll}$NDP*
[$\epsilon_{cl}$]

NDP*
[$\epsilon_{cl}$]

Maximum concrete strength$f_{ck}$ $\le$ 90 MPa
[3.1.2(2)]
$f_{ck}$ $\le$ 90 MPa
[3.1.2(2)]
Maximum steel strength $f_{yk}$  $\le$ 600 MPa
[3.2.2(3)]
$f_{yk}$  $\le$ 600 MPa
[3.2.2(3)]
Minimum eccentricitymax{h/30, 20 mm}
[6.1(4)]
max{h/30, 20 mm}
[6.1(4)]
Minimum area compression reinforcement--
Maximum permitted angle between applied and resulting principal stress ${\varphi}_{\Delta}$-

$\|\theta-\theta_{el}\|$ = 15°
[6.109 (103)iii]
(see also $f_{cdc}$)

*NDPs are nationally determined parameters.

## Hong Kong Codes​

These codes use partial safety factors on materials.

Hong Kong Buildings 2013Hong Kong Structural Design Manual for Highways and Railways 2013
Concrete strength$f_{cu}$$f_{ck,cube}$
Steel strength$f_{y}$$f_{yk}$
Partial safety factor on concrete $\gamma_{mc}$ = 1.5
[Table 2.2]
$\gamma_c$ = 1.5
[5.1]
Partial safety factor on steel $\gamma_{ms}$ = 1.15
[Table 2.2]
$\gamma_{s}$ = 1.15
[5.1]
Uncracked concrete design strength for rectangular stress block  ${f}_{cdu}$0.67$f_{cu}$/$\gamma_{mc}$
[Figure 6.1]
0.67$f_{ck,cube}$ / $\gamma_{C}$
[Figure 5.3]
Cracked concrete design strength (equal to twice the upper limit on shear strength) ${f}_{cdc}$min{17.5, 2$\sqrt{f_{cu}}$} / $\gamma_{mc}$ 0.55
[6.1.2.5(a)]
0.6 $\times$ (1-0.8$f_{ck,cube}$ /250) $\times$ 0.8$f_{ck,cube}$ / $\gamma_{C}$
[5.1]
Concrete tensile design strength (used only to determine whether section cracked) ${f}_{cdt}$0.36$\sqrt{f_{cu}}$/ $\gamma_{mc}$
[12.3.8.4]
$f_{ck}$ $\le$ 60 MPa            [0.025$f_{ck,cube}$ + 0.6] /$\gamma_{C}$

$f_{ck}$ > 60 MPa     2.1 /$\gamma_{C}$

[Table 5.1]
Compressive plateau concrete strain ${\epsilon}_{ctrans}$0.002
[assumed]
[0.026$f_{ck,cube}$ + 1.1] /$\gamma_{C}$
[5.2.6(1) & Table 5.1]
$\epsilon_{c2}$
Maximum axial compressive concrete strain ${\epsilon}_{cax}$$f_{cu}$ $\le$ 60 MPa 0.0035

$f_{cu}$ > 60 MPa 0.0035- 0.00006 $\times$ $\sqrt{f_{cu}}$-60]
[Figure 6.1]
[0.026$f_{ck}$,cube + 1.1] /$\gamma_{C}$
[5.2.6(1) & Table 5.1]
$\epsilon_{c2}$
Maximum flexural compressive concrete strain ${\epsilon}_{cu}$$f_{cu}$ $\le$ 60 MPa 0.0035

$f_{cu}$ > 60 MPa 0.0035- 0.00006 $\times$ $\sqrt{f_{cu}}$-60]

[Figure 6.1]
$f_{ck}$,cube $\le$ 60 MPa 0.0035

$f_{ck}$,cube > 60 MPa 0.0035- 0.00006 $\times$ $\sqrt{f_{ck,cube}}$-60]

[5.2.6(1)]
Proportion of depth to neutral axis over which constant stress acts $\beta$$f_{cu}$ $\le$ 45 MPa 0.9

45 < $f_{cu}$ $\le$ 70 0.8

$f_{cu}$ > 70 MPa 0.72

[Figure 6.1]
$f_{ck}$,cube $\le$ 45 MPa      0.9

45 < $f_{ck,cube}$ $\le$ 70      0.8

70 < $f_{ck}$,cube $\le$ 85     0.72

[Figure 5.3]
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations  ${\frac{x}{d}}_{max}$$f_{cu}$ $\le$ 45 MPa   0.50

45 < $f_{cu}$ $\le$ 70    0.40

$f_{cu}$ > 70 MPa   0.33

[6.1.2.4(b)]
$f_{ck}$ $\le$ 50 MPa 0.344

$f_{ck}$ > 50 MPa             0.6/{0.6 + 0.4/ (2.6 + 35[(90-$f_{ck}$)/100] $^4$ )}

[5.1]
Elastic modulus of steel $E_s$200 GPa
[Figure 3.9]
200 GPa
[5.1]
$E_s$
Design strength of reinforcement in tension  $f_{yd}$ $f_{y}$ / $\gamma_{ms}$
[Figure 3.9]
$f_{yk}$ / $\gamma_s$
[5.1]
Design strength of reinforcement in compression  $f_{ydc}$ $f_{y}$ / $\gamma_{ms}$
[Figure 3.9]
$f_{yk}$ / $\gamma_s$
[5.1]
Maximum linear steel stress  $f_{lim}$ $f_{y}$ / $\gamma_{ms}$
[Figure 3.9]
$f_{yk}$ / $\gamma_s$
[5.1]
Yield strain in tension ${\epsilon}_{plas}$ $f_{y}$ /( $\gamma_{ms}$  $E_s$ )
[Figure 3.9]
$f_{yk}$ /( $\gamma_s$  $E_s$ )
[5.1]
Yield strain in compression ${\epsilon}_{plasc}$ $f_{y}$ /( $\gamma_{ms}$  $E_s$ )
[Figure 3.9]
$f_{yk}$ /( $\gamma_s$  $E_s$ )
[5.1]
Design strain limit ${\epsilon}_{sll}$(10 $\beta$ -1)×$\epsilon_{cu}$
[6.1.2.4(a) (v)]

[5.1(1) & 5.3(1) CS2:2012 Table 5
UKNA EN1992-1-1]
Maximum concrete strength$f_{cu}$ $\le$ 100 MPa
[TR 1]
$f_{ck}$,cube $\le$ 85 MPa
[5.2.1(2)]
Cmax
Maximum steel strength $f_{y}$  = 500 MPa
[Table 3.1]
$f_{yk}$  $\le$ 600 MPa
[5.1]
Minimum eccentricitymin{h/20, 20 mm}
[6.2.1.1(d)]
max{h/30, 20 mm}
[5.1]
Minimum area compression reinforcement--
Maximum permitted angle between applied and resulting principal stress ${\varphi}_{\Delta}$-

-

## Indian Codes​

These codes use partial safety factors on materials.

Indian concrete road bridge IRC:112 2011Indian concrete rail bridge IRS 1997Indian building IS456
Concrete strength$f_{ck}$$f_{ck}$$f_{ck}$
Steel strength$f_{yk}$$f_{y}$$f_{y}$
Partial safety factor on concrete $\gamma_{C}$ = 1.5
[A2.10]
$\gamma_{C}$ = 1.5
[15.4.2.1(b)]
$\gamma_{mc}$ = 1.5
[36.4.2.1]
Partial safety factor on steel $\gamma_{S}$ = 1.15
[Fig 6.2]
$\gamma_{m}$ = 1.15
[15.4.2.1(d)]
$\gamma_{ms}$ = 1.15
[36.4.2.1]
Uncracked concrete design strength for rectangular stress block  ${f}_{cdu}$$f_{ck}$ $\le$ 60 MPa    0.67$f_{ck}$/$\gamma_{C}$

$f_{ck}$ > 60 MPa  (1.24-$f_{ck}$/250) $\times$ 0.67$f_{ck}$/$\gamma_{C}$

[6.4.2.8 A2.9(2)]
${\eta}f_{cd}$
0.60$f_{ck}$/$\gamma_{mc}$
[15.4.2.1(b)]
0.67$f_{ck}$/$\gamma_{mc}$
[Figure 21]
Cracked concrete design strength (equal to twice the upper limit on shear strength) ${f}_{cdc}$$f_{ck}$ $\le$ 80 MPa    0.6$\times$ 0.67$f_{ck}$/$\gamma_{C}$

80 MPa < $f_{ck}$ $\le$ 100 MPa    (0.9-$f_{ck}$/250) $\times$ 0.67

$f_{ck}$/$\gamma_{C}$    $f_{ck}$ > 100 MPa    0.5 $\times$ 0.67$f_{ck}$/ $\gamma_{C}$

[10.3.3.2]
${\nu}_1f_{cd}$
min {11.875, 1.875 $\sqrt{f_{ck}}$ }/  $\gamma_{mc}$ 0.55
[15.4.3.1]
1.6$\sqrt{f_{ck}}$$\gamma_{mc}$  0.55
[Table 20]
Concrete tensile design strength (used only to determine whether section cracked) ${f}_{cdt}$$f_{ck}$ $\le$ 60 MPa    0.1813$f_{ck}$ 2/3/ $\gamma_{C}$

$f_{ck}$ > 60 MPa 1.589 $\times$ ln[1.8+ $f_{ck}$/12.5]/$\gamma_{C}$

[A2.2]
$f_{cdt}$
0.36$\sqrt{f_{ck}}$/ $\gamma_{mc}$

[16.4.4.2]
0.5$\sqrt{f_{ck}}$/ $\gamma_{mc}$

[From 6.2.2 (70% of  SLS value / $\gamma_{mc}$)]
Compressive plateau concrete strain ${\epsilon}_{ctrans}$$f_{ck}$ $\le$ 60 MPa 0.0018

$f_{ck}$ > 60 MPa 0.00175+ 0.00055 $\times$ [(0.8$f_{ck}$-50)/ 40]

[Table 6.5 & A2.2]
$\epsilon_{c3}$
0.002
[assumed]
0.002
[Figure 21]
Maximum axial compressive concrete strain ${\epsilon}_{cax}$$f_{ck}$ $\le$ 60 MPa 0.0018

$f_{ck}$ > 60 MPa 0.00175+ 0.00055 $\times$
[(0.8$f_{ck}$-50)/ 40]   [Table 6.5 & A2.2]
$\epsilon_{c3}$
0.0035
[15.4.2.1(b)]
0.002
[39.1a]
Maximum flexural compressive concrete strain ${\epsilon}_{cu}$$f_{ck}$ $\le$ 60 MPa 0.0035

$f_{ck}$ > 60 MPa 0.0026+0.035 $\times$ [(90-0.8$f_{ck}$)/ 100]4

[Table 6.5 & A2.2]
$\epsilon_{cu3}$
0.0035
[15.4.2.1(b)]
0.0035
[38.1b]
Proportion of depth to neutral axis over which constant stress acts $\beta$$f_{ck}$ $\le$ 60 MPa        0.8

$f_{ck}$ > 60 MPa     0.8-($f_{ck}$-60)/500   [A2.9(2)]
$\lambda$

[15.4.2.1(b)]
0.84
[38.1c]
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations  ${\frac{x}{d}}_{max}$[upper limit]   1/{1+frac{\epsilon_{s}}{\epsilon_{cu})   <br />where $\epsilon_{s} = 0.002 +$frac{f_y}{E_s\gamma_m}$ [15.4.2.1(d)] fy = 250 0.53 fy = 415 0.48 fy = 500 0.46 [38.1f] ${frac{x_{u,max}}{d}}$ Elastic modulus of steel $E_s$200 GPa [6.2.2] $E_s$ 200 GPa [Figure 4B] $E_s$ 200 GPa [Figure 23B] Design strength of reinforcement in tension $f_{yd}$ $f_{yk}$ / $\gamma_s$ [6.2.2] $f_{yd}$ $f_{y}$ / $\gamma_{m}$ [Figure 4B] $f_{y}$ / $\gamma_{ms}$ [Figure 23B] Design strength of reinforcement in compression $f_{ydc}$ $f_{yk}$ / $\gamma_s$ [6.2.2] $f_{yd}$ ( $f_{y}$ / $\gamma_{m}$ )/[1+ ( $f_{y}$ / $\gamma_{m}$ )/ 2000] [15.6.3.3] $f_{y}$ c/ $\gamma_{m}$ $f_{y}$ / $\gamma_{ms}$ [Figure 23B] Maximum linear steel stress $f_{lim}$ $f_{yk}$ / $\gamma_s$ [6.2.2] 0.8 $f_{y}$ / $\gamma_{m}$ [Figure 4B] $f_{y}$ / $\gamma_{ms}$ [Figure 23B] Yield strain in tension ${\epsilon}_{plas}$ $f_{yk}$ /( $\gamma_s$ $E_s$ ) [6.2.2] $f_{y}$ /( $\gamma_{m}$ $E_s$ ) + 0.002 [Figure 4B] $f_{y}$ /( $\gamma_{ms}$ $E_s$ ) [Figure 23B] Yield strain in compression ${\epsilon}_{plasc}$ $f_{yk}$ /( $\gamma_s$ $E_s$ ) [6.2.2] 0.002 [assumed] $f_{y}$ /( $\gamma_{ms}$ $E_s$ ) [Figure 23B] Design strain limit ${\epsilon}_{sll}$[0.01] assumed [0.01] assumed [0.01] assumed Maximum concrete strength$f_{ck}$ $\le$ 110 MPa [A2.9(2)] $f_{ck}$ $\le$ 60 MPa [Table 2] $f_{ck}$ $\le$ 80 MPa [Table 2] Maximum steel strength $f_{yk}$ $\le$ 600 MPa [Table 6.1] - $f_{y}$ $\le$ 500 MPa [5.6] Minimum eccentricity0.05 h [7.6.4.2] min{0.05 h, 20 mm} [15.6.3.1] max{h/30, 20 mm} [25.4] Minimum area compression reinforcement--- Maximum permitted angle between applied and resulting principal stress ${\varphi}_{\Delta}$- - - ## Chinese Codes​ PR China GB 50010 2002 Characteristic concrete cube strength $f_{cu,k}$ (value after ‘C’ in grade description) Characteristic steel strength $f_{yk}$ – related to bar type in Table 4.2.2-1 Design concrete strength $f_{c}$ - related to $f_{cu,k}$ in Table 4.1.4 Uncracked concrete design strength for rectangular stress block $f_{cdu}$ $f_{cu,k}$ $\le$ 50 MPa $f_{c}$ $f_{cu,k}$ > 50 MPa [1 - 0.002( $f_{cu,k}$ -50)]× $f_{c}$ [7.1.3] $\alpha_{1}$ $f_{c}$ Cracked concrete design strength (equal to twice the upper limit on shear strength) $f_{cdc}$ $f_{cu,k}$ $\le$ 50 MPa 0.4 $f_{c}$ $f_{ck}$ > 50 MPa 0.4×[1 - 0.00667( $f_{cu,k}$ -50)]× $f_{c}$ [7.5.1] 0.4 $\beta_{c}$ $f_{c}$ Concrete tensile design strength (used only to determine whether section cracked) $f_{cdt}$ $f_{t}$ - related to $f_{cu,k}$ in Table 4.1.4 Compressive plateau concrete strain $\epsilon_{ctrans}$ $f_{cu,k}$ ≤ 50 MPa 0.002 $f_{cu,k}$ > 50 MPa 0.02 + 0.5( $f_{cu,k}$ -50)×10-5 [7.1.2] $\epsilon_{0}$ Maximum axial compressive concrete strain $\epsilon_{cax}$ $f_{cu,k}$ ≤ 50 MPa 0.002 $f_{cu,k}$ > 50 MPa 0.02 + 0.5( $f_{cu,k}$ -50)×10-5 [7.1.2] $\epsilon_{0}$ Maximum flexural compressive concrete strain $\epsilon_{cu}$ $f_{cu,k}$ ≤ 50 MPa 0.0033 $f_{cu,k}$ > 50 MPa 0.0033 - ( $f_{cu,k}$ -50)×10-5 [7.1.2] $\epsilon_{cu}$ Proportion of depth to neutral axis over which constant stress acts $\beta$ $f_{cu,k}$ ≤ 50 MPa 0.8 $f_{cu,k}$ > 50 MPa 0.8-0.002( $f_{cu,k}$ -50) $\beta_{1}$ Maximum value of ratio of depth to neutral axis to effective depth in flexural situations ${(\frac{x}{d})}_{max}$ $\beta_{1}$ /[1+ $f_{y}$ /( $E_{s}$ $\epsilon_{cu}$ )] [7.1.4 & 7.2.1] $\xi_{b}$ Elastic modulus of steel $E_s$ $f_{y}$ < 300 MPa 210 GPa $f_{y}$ ≥ 300 MPa 200 GPa [4.2.4] $E_{s}$ Design strength of reinforcement in tension $f_{yd}$ $f_{y}$ – related to $f_{yk}$ in Table 4.2.3 Design strength of reinforcement in compression $f_{ydc}$ ${f'}_{y}$ – related to $f_{yk}$ in Table 4.2.3 Maximum linear steel stress $f_{lim}$ $f_{y}$ – related to $f_{yk}$ in Table 4.2.3 Yield strain in tension $\epsilon_{plas}$ $f_{y}$ / $E_{s}$ Yield strain in compression $\epsilon_{plasc}$ ${f'}_{y}$ / $E_{s}$ Design strain limit $\epsilon_{su}$ 0.01 [7.1.2(4)] Maximum concrete strength $f_{cu,k}$ $\le$ 80 MPa [Table 4.1.3] Maximum steel strength $f_{yk}$ $\le$ 400 MPa [Table 4.2.2-1] Minimum eccentricity max{h/30, 20 mm} [7.3.3] Minimum area compression reinforcement 0.2% each face [Table 9.5.1] Maximum permitted angle between applied and resulting principal stress ${\varphi}_{\Delta}$ - ## Canadian Codes​ These codes use resistance factors on materials. CSA A23.3-04CSA A23.3-14CSA S6-14 Compulsory input parameters Concrete strength $f_c'$ $f_c'$ $f_c'$ Steel strength $f_y$ $f_y$ $f_y$ Code parameters that can be overwritten Resistance factor on concrete $\phi_c$ = 0.65 [8.4.2] $\phi_c$ = 0.65 [8.4.2] $\phi_c$ = 0.75 [8.4.6] Resistance factor on steel $\phi_s$ = 0.85 [8.4.3(a)] $\phi_s$ = 0.85 [8.4.3(a)] $\phi_s$ = 0.9 [8.4.6] Derived parameters that can be overwritten Uncracked concrete design strength for rectangular stress block $f_{cdu}$ Max{0.67, 0.85-0.0015 $\times$ $f_c'$ } $\times$ $\phi_c$ $f_c'$ [10.1.7] Max{0.67, 0.85-0.0015 $\times$ $f_c'$ } $\times$ $\phi_c$ $f_c'$ [10.1.7] Max{0.67, 0.85-0.0015 $\times$ $f_c'$ } $\times$ $\phi_c$ $f_c'$ [8.8.3(f)] Cracked concrete design strength (equal to twice the upper limit on shear strength) $f_{cdc}$ 0.5 $\phi_c$ $f_c'$ [11.3.3] 0.4 $\phi_c$ $f_c'$ [21.6.3.5] 0.5 $\phi_c$ $f_c'$ [8.9.3.3] Concrete tensile design strength (used only to determine whether section cracked) $f_{cdt}$ 0.37 $\phi_c$ \sqrt{$f_c' }
[22.4.1.2]
0.37 $\phi_c$  \sqrt{ $f_c' } [22.4.1.2] 0.4 $\phi_c$ \sqrt{$f_c' }
[8.4.1.8.1]
Compressive plateau concrete strain
$\epsilon_{ctrans}$
0.002
[assumed]
0.002
[assumed]
0.002
[assumed]
Maximum axial compressive concrete strain
$\epsilon_{cax}$
0.0035
[10.1.3]
0.0035
[10.1.3]
0.0035
[8.8.3(c)]
Maximum flexural compressive concrete strain
$\epsilon_{cu}$
0.0035
[10.1.3]
0.0035
[10.1.3]
0.0035
[8.8.3(c)]
Proportion of depth to neutral axis over which constant stress acts
$\beta$
Max{0.67, 0.97-0.0025 $\times$  $f_c'$ }
[10.1.7(c)]
$\beta_1$
Max{0.67, 0.97-0.0025 $\times$  $f_c'$ }
[10.1.7(c)]
$\beta_1$
Max{0.67, 0.97-0.0025 $\times$  $f_c'$ }
[8.8.3(f)]
$\beta_1$
Maximum value of ratio of depth to neutral axis to effective depth in flexural situations
${(\frac{x}{d})}_{max}$
[upper limit]
${(\frac{c}{d})}_{max}$
[upper limit]
${(\frac{c}{d})}_{max}$
[upper limit]
${(\frac{c}{d})}_{max}$
Elastic modulus of steel
$E_s$
$\phi_s$   $\times$  200 GPa
[8.5.3.2 & 8.5.4.1]
$\phi_s$   $\times$  200 GPa
[8.5.3.2 & 8.5.4.1]
$\phi_s$   $\times$  200 GPa
[8.4.2.1.4 & 8.8.3(d)]
Design strength of reinforcement in tension
$f_{yd}$
$\phi_s$  $f_y$
[8.5.3.2]
$\phi_s$  $f_y$
[8.5.3.2]
$\phi_s$  $f_y$
[8.4.2.1.4 & 8.8.3(d)]
Design strength of reinforcement in compression
$f_{ydc}$
$\phi_s$  $f_y$
[8.5.3.2]
$\phi_s$  $f_y$
[8.5.3.2]
$\phi_s$  ${f}_{y}$