Second Moments of Area & Bending
The second moments of area are defined as
IyyIzzIyz=∫Az2dA=∫Ay2dA=∫AyzdA For symmetric sections Ixy is zero.
For uniaxial bending or bending about principal axes
MyMz=EIyyκy=EIzzκz When there is biaxial bending these have to be modified to
{MyMz}=E[Iyy−Iyz−IyzIzz]{κyκz} As the second moments of area form a tensor these can be rotated to
different axes using a rotation matrix
[I~yy−I~yz−I~yzI~zz]=[cosθsinθ−sinθcosθ][Iyy−Iyz−IyzIzz][cosθ−sinθsinθcosθ] Or
I~yy=Iyycos2θ+Izzsin2θ−2IyzsinθcosθI~zz=Iyysin2θ+Izzcos2θ+2IyzsinθcosθI~yz=Iyysinθcosθ−Izzsinθcosθ+Iyz(cos2θ−sin2θ) Or in terms of double angles
I~yy=2Iyy+Izz+2Iyy−Izzcos2θ−Iyzsin2θI~zz=2Iyy+Izz−2Iyy−Izzcos2θ+Iyzsin2θI~yz=2Iyy−Izzsin2θ+Iyzcos2θ